File size: 4,184 Bytes
69210b9 62a4bec 69210b9 a092d54 67fbb52 e465159 69210b9 9d73da0 f312f0d 1804706 0e7d7a3 69210b9 0e7d7a3 69210b9 0e7d7a3 69210b9 9d73da0 69210b9 9d73da0 69210b9 9d73da0 62a4bec 69210b9 62a4bec 69210b9 0e7d7a3 69210b9 62a4bec 69210b9 62a4bec 69210b9 62a4bec 69210b9 71257bd 9d73da0 69210b9 9d73da0 69210b9 9d73da0 69210b9 9d73da0 69210b9 9d73da0 67fbb52 e465159 69210b9 0e7d7a3 69210b9 0e7d7a3 69210b9 9d73da0 69210b9 9d73da0 69210b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import os
import sys
import json
import requests
from requests.exceptions import RequestException
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
import redis
from typing import List, Dict
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.schema import Document
from llama_index.core.settings import Settings
# β
Disable OpenAI fallback
Settings.llm = None
# π Environment variables
REDIS_URL = os.environ.get("UPSTASH_REDIS_URL", "redis://localhost:6379")
REDIS_KEY = os.environ.get("UPSTASH_REDIS_TOKEN")
MISTRAL_URL = os.environ.get("MISTRAL_URL") # Hugging Face endpoint
HF_TOKEN = os.environ.get("HF_TOKEN") # Hugging Face token
# β
Redis client
redis_client = redis.Redis.from_url(REDIS_URL, decode_responses=True)
# π° Topics to summarize
TOPICS = ["India news", "World news", "Tech news", "Finance news", "Sports news"]
# βοΈ Build Mistral prompt
def build_prompt(content: str, topic: str) -> str:
return (
f"You are a news summarizer. Summarize the following content in 25-30 words. "
f"Make it engaging and informative. Include appropriate emojis. Topic: {topic}\n\n{content}"
)
# π§ Send prompt to Mistral
HEADERS = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json"
}
def call_mistral(prompt: str, max_new_tokens: int = 128, temperature: float = 0.7) -> str:
"""
Call Hugging Face Inference Endpoint hosting Mistral-7B.
Returns the generated summary, or empty string on failure.
"""
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_new_tokens,
"temperature": temperature
}
}
try:
response = requests.post(MISTRAL_URL, headers=HEADERS, json=payload, timeout=60)
response.raise_for_status()
data = response.json()
# Handle both list and dict output formats
if isinstance(data, list) and data:
return data[0].get("generated_text", "").strip()
if isinstance(data, dict) and "generated_text" in data:
return data["generated_text"].strip()
except RequestException as e:
print("β Mistral HF request failed:", str(e))
if e.response is not None:
print("βͺοΈ Response:", e.response.text[:300])
except Exception as e:
print("β Unexpected error:", str(e))
return ""
# βοΈ Generate summaries per topic
def summarize_topic(docs: List[str], topic: str) -> List[Dict]:
feed = []
for i, doc in enumerate(docs[:5]):
if not doc or len(doc.strip()) < 200:
print(f"β οΈ Skipped short/empty doc {i+1} for '{topic}'\n")
continue
print(f"π Doc {i+1} preview:\n{doc[:300]}...\n")
prompt = build_prompt(doc, topic)
summary = call_mistral(prompt)
if summary:
feed.append({
"summary": summary,
"image_url": "https://source.unsplash.com/800x600/?news",
"article_link": "https://google.com/search?q=" + topic.replace(" ", "+")
})
return feed
# π Full pipeline
def generate_and_cache_daily_feed(documents: List[Document]):
index = VectorStoreIndex.from_documents(documents)
retriever = index.as_retriever()
query_engine = RetrieverQueryEngine(retriever=retriever)
final_feed = []
for topic in TOPICS:
print(f"\nπ Generating for: {topic}")
response = query_engine.query(topic)
docs = [str(node.get_content()) for node in response.source_nodes]
topic_feed = summarize_topic(docs, topic)
final_feed.append({
"topic": topic.lower().replace(" news", ""),
"feed": topic_feed
})
# πΎ Cache feed to Redis
redis_client.set(REDIS_KEY, json.dumps(final_feed, ensure_ascii=False))
print(f"β
Cached daily feed under key '{REDIS_KEY}'")
return final_feed
# π¦ For API access
def get_cached_daily_feed():
cached = redis_client.get(REDIS_KEY)
return json.loads(cached) if cached else []
|