File size: 827 Bytes
30ac946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from fastai.basics import *
from fastai.vision import models
from fastai.vision.all import *
from fastai.metrics import *
from fastai.data.all import *
from fastai.callback import *


from pathlib import Path
import random

import gradio as gr


# Cargamos el learner
learn = load_learner('unet.pht')

# Definimos las etiquetas de nuestro modelo
labels = learn.dls.vocab


# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['color_154.jpg','color_155.jpg']).launch(share=False)