Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,482 Bytes
ffce453 e77dcbd c6373ae e77dcbd ffce453 e77dcbd ffce453 e77dcbd ffce453 be6fb7d e77dcbd ffce453 e77dcbd ffce453 e77dcbd ffce453 8521a9b e77dcbd dd7cd32 a4ed224 dd7cd32 e77dcbd a4ed224 e77dcbd ffce453 8521a9b e77dcbd f6e2a5b e77dcbd 3f3bb20 e77dcbd 3f3bb20 96fce22 3f3bb20 e77dcbd b8ae285 96fce22 e77dcbd ffce453 3f3bb20 e77dcbd ffce453 e77dcbd ffce453 ac66727 e77dcbd 8dbc0ca b1f5007 e77dcbd ac66727 e77dcbd ac66727 e77dcbd c65c705 ac66727 e77dcbd c65c705 e77dcbd c65c705 ac66727 e77dcbd c65c705 e77dcbd 38dda01 e77dcbd b1f5007 ffce453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from threading import Thread
import torch
import time
# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Apollo system prompt
SYSTEM_PROMPT = "You are Apollo, a multilingual medical model. You communicate with people and assist them."
LICENSE = """
<div style="font-family: monospace; white-space: pre; margin-top: 20px; line-height: 1.2;">
@misc{wang2024apollo,
title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
year={2024},
eprint={2403.03640},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{zheng2024efficientlydemocratizingmedicalllms,
title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts},
author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang},
year={2024},
eprint={2410.10626},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.10626},
}
</div>
"""
# Apollo model options
APOLLO_MODELS = {
"Apollo": [
"FreedomIntelligence/Apollo-7B",
"FreedomIntelligence/Apollo-6B",
"FreedomIntelligence/Apollo-2B",
"FreedomIntelligence/Apollo-0.5B",
],
"Apollo2": [
"FreedomIntelligence/Apollo2-7B",
"FreedomIntelligence/Apollo2-3.8B",
"FreedomIntelligence/Apollo2-2B",
],
"Apollo-MoE": [
"FreedomIntelligence/Apollo-MoE-7B",
"FreedomIntelligence/Apollo-MoE-1.5B",
"FreedomIntelligence/Apollo-MoE-0.5B",
]
}
# CSS styles
css = """
h1 {
text-align: center;
display: block;
}
.gradio-container {
max-width: 1200px;
margin: auto;
}
"""
# Global variables to store currently loaded model and tokenizer
current_model = None
current_tokenizer = None
current_model_path = None
@spaces.GPU(duration=120)
def load_model(model_path, progress=gr.Progress()):
"""Load the selected model and tokenizer"""
global current_model, current_tokenizer, current_model_path
# If the same model is already loaded, don't reload it
if current_model_path == model_path and current_model is not None:
return "Model already loaded, no need to reload."
# Clean up previously loaded model (if any)
if current_model is not None:
del current_model
del current_tokenizer
torch.cuda.empty_cache()
progress(0.1, desc=f"Starting to load model {model_path}...")
try:
progress(0.3, desc="Loading tokenizer...")
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if 'MoE' in model_path:
from configuration_upcycling_qwen2_moe import UpcyclingQwen2MoeConfig
config = UpcyclingQwen2MoeConfig.from_pretrained(model_path, trust_remote_code=True)
# config_moe.auto_map["AutoConfig"] = "./configuration_upcycling_qwen2_moe.UpcyclingQwen2MoeConfig"
# config_moe.auto_map["AutoModelForCausalLM"] = "./modeling_upcycling_qwen2_moe.UpcyclingQwen2MoeForCausalLM"
current_tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,trust_remote_code=True)
progress(0.5, desc="Loading model...")
if 'MoE' in model_path:
from modeling_upcycling_qwen2_moe import UpcyclingQwen2MoeForCausalLM
current_model = UpcyclingQwen2MoeForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16,
config=config,
trust_remote_code=True
)
else:
current_model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16,
config=config,
trust_remote_code=True
)
current_model_path = model_path
progress(1.0, desc="Model loading complete!")
return f"Model {model_path} successfully loaded."
except Exception as e:
progress(1.0, desc="Model loading failed!")
return f"Model loading failed: {str(e)}"
@spaces.GPU(duration=120)
def generate_response_non_streaming(instruction, model_name, temperature=0.7, max_tokens=1024):
"""Generate a response from the Apollo model (non-streaming)"""
global current_model, current_tokenizer, current_model_path
print("instruction:",instruction)
# If model is not yet loaded, load it first
if current_model_path != model_name or current_model is None:
load_message = load_model(model_name)
if "failed" in load_message.lower():
return load_message
try:
# 直接使用简单的提示格式,不使用模型的聊天模板
prompt = f"User:{instruction}\nAssistant:"
print("prompt:",prompt)
chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
# 生成响应
output = current_model.generate(
input_ids=chat_input,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=(temperature > 0),
eos_token_id=current_tokenizer.eos_token_id # 使用<|endoftext|>作为停止标记
)
# 解码并返回生成的文本
generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
print("generated_text:",generated_text)
return generated_text
except Exception as e:
return f"生成响应时出错: {str(e)}"
# try:
# # 检查模型是否有聊天模板
# if hasattr(current_tokenizer, 'chat_template') and current_tokenizer.chat_template:
# # 使用模型的聊天模板
# messages = [
# {"role": "system", "content": SYSTEM_PROMPT},
# {"role": "user", "content": instruction}
# ]
# # 使用模型的聊天模板格式化输入
# chat_input = current_tokenizer.apply_chat_template(
# messages,
# tokenize=True,
# return_tensors="pt"
# ).to(current_model.device)
# else:
# # 使用指定的提示格式
# prompt = f"User:{instruction}\nAssistant:"
# chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
# # 获取<|endoftext|>的token id,用于停止生成
# eos_token_id = current_tokenizer.eos_token_id
# # 生成响应
# output = current_model.generate(
# input_ids=chat_input,
# max_new_tokens=max_tokens,
# temperature=temperature,
# do_sample=(temperature > 0),
# eos_token_id=current_tokenizer.eos_token_id # 使用<|endoftext|>作为停止标记
# )
# # 解码并返回生成的文本
# generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
# return generated_text
# except Exception as e:
# return f"生成响应时出错: {str(e)}"
def update_chat_with_response(chatbot, instruction, model_name, temperature, max_tokens):
"""Updates the chatbot with non-streaming response"""
global current_model, current_tokenizer, current_model_path
# If model is not yet loaded, load it first
if current_model_path != model_name or current_model is None:
load_result = load_model(model_name)
if "failed" in load_result.lower():
new_chat = list(chatbot)
new_chat[-1] = (instruction, load_result)
return new_chat
# Generate response using the non-streaming function
response = generate_response_non_streaming(instruction, model_name, temperature, max_tokens)
# Create a copy of the current chatbot and add the response
new_chat = list(chatbot)
new_chat[-1] = (instruction, response)
return new_chat
def on_model_series_change(model_series):
"""Update available model list based on selected model series"""
if model_series in APOLLO_MODELS:
return gr.update(choices=APOLLO_MODELS[model_series], value=APOLLO_MODELS[model_series][0])
return gr.update(choices=[], value=None)
def process_message(message, chat_history, model_series_value, model_name_value, temperature_value, max_tokens_value):
"""Process user message and generate response"""
if message.strip() == "":
return "", chat_history
# 打印用户提交的消息,用于调试
print("instruction:", message)
# Add user message to chat history
chat_history = list(chat_history)
chat_history.append((message, None))
# 自动加载模型(如果需要)
global current_model, current_tokenizer, current_model_path
if current_model_path != model_name_value or current_model is None:
try:
load_result = load_model(model_name_value)
if "failed" in load_result.lower():
chat_history[-1] = (message, f"模型加载失败: {load_result}")
return "", chat_history
except Exception as e:
chat_history[-1] = (message, f"模型加载出错: {str(e)}")
return "", chat_history
# Generate response
try:
response = generate_response_non_streaming(message, model_name_value, temperature_value, max_tokens_value)
# Add response to chat history
chat_history[-1] = (message, response)
except Exception as e:
chat_history[-1] = (message, f"生成响应时出错: {str(e)}")
return "", chat_history
# Create Gradio interface
with gr.Blocks(css=css) as demo:
# Title and description
favicon = "🩺"
gr.Markdown(
f"""# {favicon} Apollo Playground
This is a demo of the multilingual medical model series **[Apollo](https://github.com/FreedomIntelligence/Apollo)** made by **[FreedomIntelligence](https://huggingface.co/FreedomIntelligence)**.
[Apollo1](https://arxiv.org/abs/2403.03640) supports 6 languages. [Apollo2](https://arxiv.org/abs/2410.10626) and [Apollo-MoE](https://arxiv.org/abs/2410.10626) supports 50 languages.
"""
)
with gr.Row():
with gr.Column(scale=1):
# Model selection controls
model_series = gr.Dropdown(
choices=list(APOLLO_MODELS.keys()),
value="Apollo",
label="Select Model Series",
info="First choose Apollo, Apollo2 or Apollo-MoE"
)
model_name = gr.Dropdown(
choices=APOLLO_MODELS["Apollo"],
value=APOLLO_MODELS["Apollo"][0],
label="Select Model Size",
info="Select the specific model size based on the chosen model series"
)
# Parameter settings
with gr.Accordion("Generation Parameters", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.05,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=128,
maximum=2048,
value=1024,
step=32,
label="Maximum Tokens"
)
# 移除Load Model按钮和状态显示
# load_button = gr.Button("Load Model")
# model_status = gr.Textbox(label="Model Status", value="No model loaded yet")
with gr.Column(scale=2):
# Chat interface
chatbot = gr.Chatbot(label="Conversation", height=500, value=[]) # Initialize with empty list
user_input = gr.Textbox(
label="Input Medical Question",
placeholder="Example: What are the symptoms of hypertension? 高血压有哪些症状?",
lines=3
)
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear Chat")
# Event handling
# Update model selection when model series changes
model_series.change(
fn=on_model_series_change,
inputs=model_series,
outputs=model_name
)
# 修改提交事件绑定
submit_event = user_input.submit(
fn=process_message,
inputs=[user_input, chatbot, model_series, model_name, temperature, max_tokens],
outputs=[user_input, chatbot]
)
submit_button.click(
fn=process_message,
inputs=[user_input, chatbot, model_series, model_name, temperature, max_tokens],
outputs=[user_input, chatbot]
)
# Clear chat
clear_button.click(
fn=lambda: [],
outputs=chatbot
)
# # Handle message submission
# def user_message_submitted(message, chat_history):
# """Handle user submitted message"""
# # Ensure chat_history is a list
# if chat_history is None:
# chat_history = []
# if message.strip() == "":
# return "", chat_history
# # Add user message to chat history
# chat_history = list(chat_history)
# chat_history.append((message, None))
# return "", chat_history
# # Bind message submission
# submit_event = user_input.submit(
# fn=user_message_submitted,
# inputs=[user_input, chatbot],
# outputs=[user_input, chatbot]
# ).then(
# fn=update_chat_with_response,
# inputs=[chatbot, user_input, model_name, temperature, max_tokens],
# outputs=chatbot
# )
# submit_button.click(
# fn=user_message_submitted,
# inputs=[user_input, chatbot],
# outputs=[user_input, chatbot]
# ).then(
# fn=update_chat_with_response,
# inputs=[chatbot, user_input, model_name, temperature, max_tokens],
# outputs=chatbot
# )
# # Clear chat
# clear_button.click(
# fn=lambda: [],
# outputs=chatbot
# )
examples = [
["Últimamente tengo la tensión un poco alta, ¿cómo debo adaptar mis hábitos?"],
["What are the common side effects of metformin?"],
["中医和西医在治疗高血压方面有什么不同的观点?"],
["मेरा सिर दर्द कर रहा है, मुझे क्या करना चाहिए? "],
["Comment savoir si je suis diabétique ?"],
["ما الدواء الذي يمكنني تناوله إذا لم أستطع النوم ليلاً؟"],
["针对一名28岁女性患者,她左小腿挫伤12小时,伤口有分泌物,骨折端外露,小腿成角畸形,描述她的最佳处理方法。"]
]
gr.Examples(
examples=examples,
inputs=user_input
)
gr.HTML(LICENSE)
if __name__ == "__main__":
demo.launch()
|