File size: 15,482 Bytes
ffce453
e77dcbd
 
c6373ae
e77dcbd
 
 
ffce453
e77dcbd
 
ffce453
e77dcbd
 
ffce453
be6fb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
ffce453
8521a9b
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd7cd32
 
a4ed224
 
 
 
dd7cd32
e77dcbd
 
a4ed224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77dcbd
 
 
 
 
 
 
ffce453
8521a9b
e77dcbd
 
 
f6e2a5b
e77dcbd
 
 
 
 
3f3bb20
e77dcbd
3f3bb20
 
96fce22
3f3bb20
e77dcbd
 
 
 
 
 
 
 
 
 
 
b8ae285
96fce22
e77dcbd
 
 
ffce453
3f3bb20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
 
ffce453
ac66727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77dcbd
 
 
 
 
 
8dbc0ca
b1f5007
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac66727
 
 
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac66727
e77dcbd
c65c705
ac66727
e77dcbd
 
c65c705
e77dcbd
c65c705
ac66727
e77dcbd
 
 
 
 
 
 
 
 
c65c705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77dcbd
 
 
 
 
 
38dda01
 
e77dcbd
 
 
 
 
b1f5007
ffce453
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from threading import Thread
import torch
import time

# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# Apollo system prompt
SYSTEM_PROMPT = "You are Apollo, a multilingual medical model. You communicate with people and assist them."

LICENSE = """
<div style="font-family: monospace; white-space: pre; margin-top: 20px; line-height: 1.2;">
@misc{wang2024apollo,
   title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
   author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
   year={2024},
   eprint={2403.03640},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}
@misc{zheng2024efficientlydemocratizingmedicalllms,
      title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, 
      author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang},
      year={2024},
      eprint={2410.10626},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.10626}, 
}
</div>
"""

# Apollo model options
APOLLO_MODELS = {
    "Apollo": [
        "FreedomIntelligence/Apollo-7B",
        "FreedomIntelligence/Apollo-6B",
        "FreedomIntelligence/Apollo-2B",
        "FreedomIntelligence/Apollo-0.5B",
        
    ],
    "Apollo2": [
        "FreedomIntelligence/Apollo2-7B",
        "FreedomIntelligence/Apollo2-3.8B",
        "FreedomIntelligence/Apollo2-2B",
    ],
    "Apollo-MoE": [
        "FreedomIntelligence/Apollo-MoE-7B",
        "FreedomIntelligence/Apollo-MoE-1.5B",
        "FreedomIntelligence/Apollo-MoE-0.5B",
        
    ]
}

# CSS styles
css = """
h1 {
  text-align: center;
  display: block;
}
.gradio-container {
  max-width: 1200px;
  margin: auto;
}
"""

# Global variables to store currently loaded model and tokenizer
current_model = None
current_tokenizer = None
current_model_path = None

@spaces.GPU(duration=120)
def load_model(model_path, progress=gr.Progress()):
    """Load the selected model and tokenizer"""
    global current_model, current_tokenizer, current_model_path
    
    # If the same model is already loaded, don't reload it
    if current_model_path == model_path and current_model is not None:
        return "Model already loaded, no need to reload."
    
    # Clean up previously loaded model (if any)
    if current_model is not None:
        del current_model
        del current_tokenizer
        torch.cuda.empty_cache()
    
    progress(0.1, desc=f"Starting to load model {model_path}...")
    
    try:
        progress(0.3, desc="Loading tokenizer...")
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        if 'MoE' in model_path:
            from configuration_upcycling_qwen2_moe import UpcyclingQwen2MoeConfig
            config = UpcyclingQwen2MoeConfig.from_pretrained(model_path, trust_remote_code=True)
            # config_moe.auto_map["AutoConfig"] = "./configuration_upcycling_qwen2_moe.UpcyclingQwen2MoeConfig"
            # config_moe.auto_map["AutoModelForCausalLM"] = "./modeling_upcycling_qwen2_moe.UpcyclingQwen2MoeForCausalLM"
        current_tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,trust_remote_code=True)
        
        progress(0.5, desc="Loading model...")
        if 'MoE' in model_path:
            from modeling_upcycling_qwen2_moe import UpcyclingQwen2MoeForCausalLM
            current_model = UpcyclingQwen2MoeForCausalLM.from_pretrained(
                model_path, 
                device_map="auto", 
                torch_dtype=torch.float16,
                config=config,
                trust_remote_code=True
            )
        else:
            current_model = AutoModelForCausalLM.from_pretrained(
                model_path, 
                device_map="auto", 
                torch_dtype=torch.float16,
                config=config,
                trust_remote_code=True
            )
        
        current_model_path = model_path
        progress(1.0, desc="Model loading complete!")
        return f"Model {model_path} successfully loaded."
    except Exception as e:
        progress(1.0, desc="Model loading failed!")
        return f"Model loading failed: {str(e)}"

@spaces.GPU(duration=120)
def generate_response_non_streaming(instruction, model_name, temperature=0.7, max_tokens=1024):
    """Generate a response from the Apollo model (non-streaming)"""
    global current_model, current_tokenizer, current_model_path
    print("instruction:",instruction)
    # If model is not yet loaded, load it first
    if current_model_path != model_name or current_model is None:
        load_message = load_model(model_name)
        if "failed" in load_message.lower():
            return load_message

    try:
        # 直接使用简单的提示格式,不使用模型的聊天模板
        prompt = f"User:{instruction}\nAssistant:"
        print("prompt:",prompt)
        chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
        
        # 生成响应
        output = current_model.generate(
            input_ids=chat_input,
            max_new_tokens=max_tokens,
            temperature=temperature,
            do_sample=(temperature > 0),
            eos_token_id=current_tokenizer.eos_token_id  # 使用<|endoftext|>作为停止标记
        )
        
        # 解码并返回生成的文本
        generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
        print("generated_text:",generated_text)
        return generated_text
    except Exception as e:
        return f"生成响应时出错: {str(e)}"

    # try:
    #     # 检查模型是否有聊天模板
    #     if hasattr(current_tokenizer, 'chat_template') and current_tokenizer.chat_template:
    #         # 使用模型的聊天模板
    #         messages = [
    #             {"role": "system", "content": SYSTEM_PROMPT},
    #             {"role": "user", "content": instruction}
    #         ]
            
    #         # 使用模型的聊天模板格式化输入
    #         chat_input = current_tokenizer.apply_chat_template(
    #             messages, 
    #             tokenize=True, 
    #             return_tensors="pt"
    #         ).to(current_model.device)
    #     else:
    #         # 使用指定的提示格式
    #         prompt = f"User:{instruction}\nAssistant:"
    #         chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
            
    #         # 获取<|endoftext|>的token id,用于停止生成
    #         eos_token_id = current_tokenizer.eos_token_id
        
    #     # 生成响应
    #     output = current_model.generate(
    #         input_ids=chat_input,
    #         max_new_tokens=max_tokens,
    #         temperature=temperature,
    #         do_sample=(temperature > 0),
    #         eos_token_id=current_tokenizer.eos_token_id  # 使用<|endoftext|>作为停止标记
    #     )
        
    #     # 解码并返回生成的文本
    #     generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
    #     return generated_text
    # except Exception as e:
    #     return f"生成响应时出错: {str(e)}"

def update_chat_with_response(chatbot, instruction, model_name, temperature, max_tokens):
    """Updates the chatbot with non-streaming response"""
    global current_model, current_tokenizer, current_model_path
    
    # If model is not yet loaded, load it first
    if current_model_path != model_name or current_model is None:
        load_result = load_model(model_name)
        if "failed" in load_result.lower():
            new_chat = list(chatbot)
            new_chat[-1] = (instruction, load_result)
            return new_chat
    
    # Generate response using the non-streaming function
    response = generate_response_non_streaming(instruction, model_name, temperature, max_tokens)
    
    # Create a copy of the current chatbot and add the response
    new_chat = list(chatbot)
    new_chat[-1] = (instruction, response)
    
    return new_chat

def on_model_series_change(model_series):
    """Update available model list based on selected model series"""
    if model_series in APOLLO_MODELS:
        return gr.update(choices=APOLLO_MODELS[model_series], value=APOLLO_MODELS[model_series][0])
    return gr.update(choices=[], value=None)

def process_message(message, chat_history, model_series_value, model_name_value, temperature_value, max_tokens_value):
    """Process user message and generate response"""
    if message.strip() == "":
        return "", chat_history
    
    # 打印用户提交的消息,用于调试
    print("instruction:", message)
    
    # Add user message to chat history
    chat_history = list(chat_history)
    chat_history.append((message, None))
    
    # 自动加载模型(如果需要)
    global current_model, current_tokenizer, current_model_path
    if current_model_path != model_name_value or current_model is None:
        try:
            load_result = load_model(model_name_value)
            if "failed" in load_result.lower():
                chat_history[-1] = (message, f"模型加载失败: {load_result}")
                return "", chat_history
        except Exception as e:
            chat_history[-1] = (message, f"模型加载出错: {str(e)}")
            return "", chat_history
    
    # Generate response
    try:
        response = generate_response_non_streaming(message, model_name_value, temperature_value, max_tokens_value)
        # Add response to chat history
        chat_history[-1] = (message, response)
    except Exception as e:
        chat_history[-1] = (message, f"生成响应时出错: {str(e)}")
    
    return "", chat_history

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    # Title and description
    favicon = "🩺"
    gr.Markdown(
        f"""# {favicon} Apollo Playground
        This is a demo of the multilingual medical model series **[Apollo](https://github.com/FreedomIntelligence/Apollo)** made by **[FreedomIntelligence](https://huggingface.co/FreedomIntelligence)**.
        [Apollo1](https://arxiv.org/abs/2403.03640) supports 6 languages. [Apollo2](https://arxiv.org/abs/2410.10626) and [Apollo-MoE](https://arxiv.org/abs/2410.10626) supports 50 languages.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            # Model selection controls
            model_series = gr.Dropdown(
                choices=list(APOLLO_MODELS.keys()),
                value="Apollo",
                label="Select Model Series",
                info="First choose Apollo, Apollo2 or Apollo-MoE"
            )
            
            model_name = gr.Dropdown(
                choices=APOLLO_MODELS["Apollo"],
                value=APOLLO_MODELS["Apollo"][0],
                label="Select Model Size",
                info="Select the specific model size based on the chosen model series"
            )
            
            # Parameter settings
            with gr.Accordion("Generation Parameters", open=False):
                temperature = gr.Slider(
                    minimum=0.0, 
                    maximum=1.0, 
                    value=0.7, 
                    step=0.05, 
                    label="Temperature"
                )
                max_tokens = gr.Slider(
                    minimum=128, 
                    maximum=2048, 
                    value=1024, 
                    step=32, 
                    label="Maximum Tokens"
                )
            
            # 移除Load Model按钮和状态显示
            # load_button = gr.Button("Load Model")
            # model_status = gr.Textbox(label="Model Status", value="No model loaded yet")
        
        with gr.Column(scale=2):
            # Chat interface
            chatbot = gr.Chatbot(label="Conversation", height=500, value=[])  # Initialize with empty list
            user_input = gr.Textbox(
                label="Input Medical Question",
                placeholder="Example: What are the symptoms of hypertension? 高血压有哪些症状?",
                lines=3
            )
            submit_button = gr.Button("Submit")
            clear_button = gr.Button("Clear Chat")
    
    # Event handling
    # Update model selection when model series changes
    model_series.change(
        fn=on_model_series_change,
        inputs=model_series,
        outputs=model_name
    )
    
    # 修改提交事件绑定
    submit_event = user_input.submit(
        fn=process_message,
        inputs=[user_input, chatbot, model_series, model_name, temperature, max_tokens],
        outputs=[user_input, chatbot]
    )

    submit_button.click(
        fn=process_message,
        inputs=[user_input, chatbot, model_series, model_name, temperature, max_tokens],
        outputs=[user_input, chatbot]
    )
    
    # Clear chat
    clear_button.click(
        fn=lambda: [],
        outputs=chatbot
    )
    
    # # Handle message submission
    # def user_message_submitted(message, chat_history):
    #     """Handle user submitted message"""
    #     # Ensure chat_history is a list
    #     if chat_history is None:
    #         chat_history = []
            
    #     if message.strip() == "":
    #         return "", chat_history
        
    #     # Add user message to chat history
    #     chat_history = list(chat_history)
    #     chat_history.append((message, None))
    #     return "", chat_history
    
    # # Bind message submission
    # submit_event = user_input.submit(
    #     fn=user_message_submitted,
    #     inputs=[user_input, chatbot],
    #     outputs=[user_input, chatbot]
    # ).then(
    #     fn=update_chat_with_response,
    #     inputs=[chatbot, user_input, model_name, temperature, max_tokens],
    #     outputs=chatbot
    # )
    
    # submit_button.click(
    #     fn=user_message_submitted,
    #     inputs=[user_input, chatbot],
    #     outputs=[user_input, chatbot]
    # ).then(
    #     fn=update_chat_with_response,
    #     inputs=[chatbot, user_input, model_name, temperature, max_tokens],
    #     outputs=chatbot
    # )
    
    # # Clear chat
    # clear_button.click(
    #     fn=lambda: [],
    #     outputs=chatbot
    # )
    
    examples = [
        ["Últimamente tengo la tensión un poco alta, ¿cómo debo adaptar mis hábitos?"],
        ["What are the common side effects of metformin?"],
        ["中医和西医在治疗高血压方面有什么不同的观点?"],
        ["मेरा सिर दर्द कर रहा है, मुझे क्या करना चाहिए? "],
        ["Comment savoir si je suis diabétique ?"],
        ["ما الدواء الذي يمكنني تناوله إذا لم أستطع النوم ليلاً؟"],
        ["针对一名28岁女性患者,她左小腿挫伤12小时,伤口有分泌物,骨折端外露,小腿成角畸形,描述她的最佳处理方法。"]
    ]
    gr.Examples(
        examples=examples,
        inputs=user_input
    )
    gr.HTML(LICENSE)

if __name__ == "__main__":
    demo.launch()