File size: 6,102 Bytes
33206e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eccd3a
33206e3
 
 
 
 
7eccd3a
 
33206e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eccd3a
33206e3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
import matplotlib.pyplot as plt
import seaborn as sns

class LoanPredictionDeepANN(nn.Module):
    """
    Deeper version for maximum performance
    
    Architecture:
    - Input: 9 features
    - Hidden Layer 1: 128 neurons (ReLU)
    - Hidden Layer 2: 64 neurons (ReLU)
    - Hidden Layer 3: 32 neurons (ReLU)
    - Hidden Layer 4: 16 neurons (ReLU)
    - Output: 1 neuron (Sigmoid)
    - Dropout: [0.3, 0.3, 0.2, 0.1]
    """
    
    def __init__(self, input_size=9):
        super(LoanPredictionDeepANN, self).__init__()
        
        self.fc1 = nn.Linear(input_size, 128)
        self.dropout1 = nn.Dropout(0.3)
        
        self.fc2 = nn.Linear(128, 64)
        self.dropout2 = nn.Dropout(0.3)
        
        self.fc3 = nn.Linear(64, 32)
        self.dropout3 = nn.Dropout(0.2)
        
        self.fc4 = nn.Linear(32, 16)
        self.dropout4 = nn.Dropout(0.1)
        
        self.fc5 = nn.Linear(16, 1)
        
        self._initialize_weights()
    
    def _initialize_weights(self):
        for module in self.modules():
            if isinstance(module, nn.Linear):
                nn.init.xavier_uniform_(module.weight)
                nn.init.zeros_(module.bias)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.dropout1(x)
        
        x = F.relu(self.fc2(x))
        x = self.dropout2(x)
        
        x = F.relu(self.fc3(x))
        x = self.dropout3(x)
        
        x = F.relu(self.fc4(x))
        x = self.dropout4(x)
        
        x = torch.sigmoid(self.fc5(x))
        
        return x


def load_processed_data(data_path='data/processed'):
    """Load the processed training and test data"""
    train_data = pd.read_csv(f'{data_path}/train_data_scaled.csv')
    test_data = pd.read_csv(f'{data_path}/test_data_scaled.csv')
    
    # Separate features and target
    feature_columns = [col for col in train_data.columns if col != 'loan_repaid']
    
    X_train = train_data[feature_columns].values
    y_train = train_data['loan_repaid'].values
    
    X_test = test_data[feature_columns].values
    y_test = test_data['loan_repaid'].values
    
    return X_train, y_train, X_test, y_test, feature_columns


def calculate_class_weights(y):
    """Calculate class weights for handling imbalanced data"""
    from sklearn.utils.class_weight import compute_class_weight
    
    classes = np.unique(y)
    weights = compute_class_weight('balanced', classes=classes, y=y)
    return torch.FloatTensor(weights)


def evaluate_model(model, X_test, y_test, threshold=0.5):
    """Comprehensive model evaluation - updated for logits output"""
    model.eval()
    
    # Get predictions
    with torch.no_grad():
        X_test_tensor = torch.FloatTensor(X_test)
        y_logits = model(X_test_tensor)
        y_pred_proba = torch.sigmoid(y_logits).numpy().flatten()
        y_pred = (y_pred_proba >= threshold).astype(int)
    
    # Calculate metrics
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    recall = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    auc_roc = roc_auc_score(y_test, y_pred_proba)
    
    metrics = {
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'f1_score': f1,
        'auc_roc': auc_roc
    }
    
    return metrics, y_pred, y_pred_proba


def plot_training_history(train_losses, val_losses, train_accuracies, val_accuracies):
    """Plot training history"""
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
    
    # Loss plot
    ax1.plot(train_losses, label='Training Loss', color='blue')
    ax1.plot(val_losses, label='Validation Loss', color='red')
    ax1.set_title('Model Loss')
    ax1.set_xlabel('Epoch')
    ax1.set_ylabel('Loss')
    ax1.legend()
    ax1.grid(True)
    
    # Accuracy plot
    ax2.plot(train_accuracies, label='Training Accuracy', color='blue')
    ax2.plot(val_accuracies, label='Validation Accuracy', color='red')
    ax2.set_title('Model Accuracy')
    ax2.set_xlabel('Epoch')
    ax2.set_ylabel('Accuracy')
    ax2.legend()
    ax2.grid(True)
    
    plt.tight_layout()
    plt.show()


def plot_confusion_matrix(y_true, y_pred, class_names=['Charged Off', 'Fully Paid']):
    """Plot confusion matrix"""
    from sklearn.metrics import confusion_matrix
    
    cm = confusion_matrix(y_true, y_pred)
    
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
                xticklabels=class_names, yticklabels=class_names)
    plt.title('Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.show()
    
    return cm


def model_summary(model):
    """Print model architecture summary"""
    print("=" * 60)
    print("MODEL ARCHITECTURE SUMMARY")
    print("=" * 60)
    
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    
    print(f"Model: {model.__class__.__name__}")
    print(f"Total parameters: {total_params:,}")
    print(f"Trainable parameters: {trainable_params:,}")
    print("\nLayer Details:")
    print("-" * 40)
    
    for name, module in model.named_modules():
        if isinstance(module, nn.Linear):
            print(f"{name}: {module}")
        elif isinstance(module, nn.Dropout):
            print(f"{name}: {module}")
    
    print("=" * 60)


if __name__ == "__main__":
    # Example usage
    print("Loading processed data...")
    X_train, y_train, X_test, y_test, feature_names = load_processed_data()
    
    print(f"Training data shape: {X_train.shape}")
    print(f"Test data shape: {X_test.shape}")
    print(f"Feature names: {feature_names}")
    
    # Create model
    model = LoanPredictionDeepANN()
    model_summary(model)
    
    print("\nModel created successfully!")
    print("Use train.py to train the model.")