Spaces:
Running
Running
File size: 9,041 Bytes
e8ca4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import sys
import time
import random
import json
import numpy as np
import matplotlib.pyplot as plt
from model import MusicLSTM as MusicRNN
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from utils import seq_to_tensor, load_vocab, save_vocab
def logger(active=True):
"""Simple logging utility."""
def log(*args, **kwargs):
if active:
print(*args, **kwargs)
return log
# Configuration
class Config:
SAVE_EVERY = 20
SEQ_SIZE = 25
RANDOM_SEED = 11
VALIDATION_SIZE = 0.15
LR = 1e-3
N_EPOCHS = 100
NUM_LAYERS = 1
HIDDEN_SIZE = 150
DROPOUT_P = 0
MODEL_TYPE = 'lstm'
INPUT_FILE = 'data/music.txt'
RESUME = False
BATCH_SIZE = 1
# Utility functions
def tic():
"""Start timer."""
return time.time()
def toc(start_time, msg=None):
"""Calculate elapsed time."""
s = time.time() - start_time
m = int(s / 60)
if msg:
return f'{m}m {int(s - (m * 60))}s {msg}'
return f'{m}m {int(s - (m * 60))}s'
class DataLoader:
def __init__(self, input_file, config):
self.config = config
self.char_idx, self.char_list = self._load_chars(input_file)
self.data = self._load_data(input_file)
self.train_idxs, self.valid_idxs = self._split_data()
log = logger(True)
log(f"Total songs: {len(self.data)}")
log(f"Training songs: {len(self.train_idxs)}")
log(f"Validation songs: {len(self.valid_idxs)}")
def _load_chars(self, input_file):
"""Load unique characters from the input file."""
with open(input_file, 'r') as f:
char_idx = ''.join(set(f.read()))
return char_idx, list(char_idx)
def _load_data(self, input_file):
"""Load song data from input file."""
with open(input_file, "r") as f:
data, buffer = [], ''
for line in f:
if line == '<start>\n':
buffer += line
elif line == '<end>\n':
buffer += line
data.append(buffer)
buffer = ''
else:
buffer += line
# Filter songs shorter than sequence size
data = [song for song in data if len(song) > self.config.SEQ_SIZE + 10]
return data
def _split_data(self):
"""Split data into training and validation sets."""
num_train = len(self.data)
indices = list(range(num_train))
np.random.seed(self.config.RANDOM_SEED)
np.random.shuffle(indices)
split_idx = int(np.floor(self.config.VALIDATION_SIZE * num_train))
train_idxs = indices[split_idx:]
valid_idxs = indices[:split_idx]
return train_idxs, valid_idxs
def rand_slice(self, data, slice_len=None):
"""Get a random slice of data."""
if slice_len is None:
slice_len = self.config.SEQ_SIZE
d_len = len(data)
s_idx = random.randint(0, d_len - slice_len)
e_idx = s_idx + slice_len + 1
return data[s_idx:e_idx]
def seq_to_tensor(self, seq):
"""Convert sequence to tensor."""
out = torch.zeros(len(seq)).long()
for i, c in enumerate(seq):
out[i] = self.char_idx.index(c)
return out
def song_to_seq_target(self, song):
"""Convert a song to sequence and target."""
try:
a_slice = self.rand_slice(song)
seq = self.seq_to_tensor(a_slice[:-1])
target = self.seq_to_tensor(a_slice[1:])
return seq, target
except Exception as e:
print(f"Error in song_to_seq_target: {e}")
print(f"Song length: {len(song)}")
raise
def train_model(config, data_loader, model, optimizer, loss_function):
"""Training loop for the model."""
log = logger(True)
time_since = tic()
losses, v_losses = [], []
for epoch in range(config.N_EPOCHS):
# Training phase
epoch_loss = 0
model.train()
for i, song_idx in enumerate(data_loader.train_idxs):
try:
seq, target = data_loader.song_to_seq_target(data_loader.data[song_idx])
# Reset hidden state and gradients
model.init_hidden()
optimizer.zero_grad()
# Forward pass
outputs = model(seq)
loss = loss_function(outputs, target)
# Backward pass and optimization
loss.backward()
optimizer.step()
epoch_loss += loss.item()
msg = f'\rTraining Epoch: {epoch}, {(i+1)/len(data_loader.train_idxs)*100:.2f}% iter: {i} Time: {toc(time_since)} Loss: {loss.item():.4f}'
sys.stdout.write(msg)
sys.stdout.flush()
except Exception as e:
log(f"Error processing song {song_idx}: {e}")
continue
print()
losses.append(epoch_loss / len(data_loader.train_idxs))
# Validation phase
model.eval()
val_loss = 0
with torch.no_grad():
for i, song_idx in enumerate(data_loader.valid_idxs):
try:
seq, target = data_loader.song_to_seq_target(data_loader.data[song_idx])
# Reset hidden state
model.init_hidden()
# Forward pass
outputs = model(seq)
loss = loss_function(outputs, target)
val_loss += loss.item()
msg = f'\rValidation Epoch: {epoch}, {(i+1)/len(data_loader.valid_idxs)*100:.2f}% iter: {i} Time: {toc(time_since)} Loss: {loss.item():.4f}'
sys.stdout.write(msg)
sys.stdout.flush()
except Exception as e:
log(f"Error processing validation song {song_idx}: {e}")
continue
print()
v_losses.append(val_loss / len(data_loader.valid_idxs))
# Checkpoint saving
if epoch % config.SAVE_EVERY == 0 or epoch == config.N_EPOCHS - 1:
log('=======> Saving..')
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': losses[-1],
'v_loss': v_losses[-1],
'losses': losses,
'v_losses': v_losses,
'epoch': epoch,
}
os.makedirs('checkpoint', exist_ok=True)
torch.save(model, f'checkpoint/ckpt_mdl_{config.MODEL_TYPE}_ep_{config.N_EPOCHS}_hsize_{config.HIDDEN_SIZE}_dout_{config.DROPOUT_P}.t{epoch}')
return losses, v_losses
def plot_losses(losses, v_losses):
"""Plot training and validation losses."""
plt.figure(figsize=(10, 5))
plt.plot(losses, label='Training Loss')
plt.plot(v_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss per Epoch')
plt.legend()
plt.show()
def generate_song(model, data_loader, prime_str='<start>', max_len=1000, temp=0.8):
"""Generate a new song using the trained model."""
model.eval()
model.init_hidden()
creation = prime_str
char_idx, char_list = load_vocab()
# Build up hidden state
prime = seq_to_tensor(creation, char_idx)
with torch.no_grad():
for _ in range(len(prime)-1):
_ = model(prime[_:_+1])
# Generate rest of sequence
for _ in range(max_len):
last_char = prime[-1:]
out = model(last_char).squeeze()
out = torch.exp(out/temp)
dist = out / torch.sum(out)
# Sample from distribution
next_char_idx = torch.multinomial(dist, 1).item()
next_char = char_idx[next_char_idx]
creation += next_char
prime = torch.cat([prime, torch.tensor([next_char_idx])], dim=0)
if creation[-5:] == '<end>':
break
return creation
def main():
"""Main execution function."""
# Set up configuration and data
global model, data_loader
config = Config()
data_loader = DataLoader(config.INPUT_FILE, config)
# Model setup
in_size = out_size = len(data_loader.char_idx)
model = MusicRNN(
in_size,
config.HIDDEN_SIZE,
out_size,
config.MODEL_TYPE,
config.NUM_LAYERS,
config.DROPOUT_P
)
# Optimizer and loss
optimizer = torch.optim.Adam(model.parameters(), lr=config.LR)
loss_function = nn.CrossEntropyLoss()
# Train the model
losses, v_losses = train_model(config, data_loader, model, optimizer, loss_function)
# Plot losses
plot_losses(losses, v_losses)
save_vocab(data_loader)
# Generate a song
generated_song = generate_song(model, data_loader)
print("Generated Song:", generated_song)
if __name__ == "__main__":
main() |