File size: 11,940 Bytes
21f3d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_
#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_
#if defined __ARM_NEON || defined __aarch64__
#include <arm_neon.h>
#endif
#include <cstdint>
#include "sparse_matmul/compute/ar_inputs.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
namespace csrblocksparse {
static constexpr int kNeonSIMDWidth = 4;
// ------ Scalar calculation --------
// See "Efficient Neural Audio Synthesis" for a description of the calculation.
// https://arxiv.org/abs/1802.08435
//
// NOTE:
// |sample| = (|coarse_at_sminus1|, |fine_at_sminus1|,
// |coarse_at_sminus1|, |fine_at_sminus1|)
// |w_sample| = (|coarse_at_s|, |coarse_at_s|, |coarse_at_s|, |coarse_at_s|)
//
// CHEATSHEET:
// vld1q_f32 = load 4 32-bit floats
// vmulq_f32(a, b) : return a * b;
// vaddq_f32(a, b) : return a + b;
// vmlaq_f32(c, a, b) : return c + a * b;
// vpaddq_f32(a, b) : return (a0 + a1, a2 + a3, b0 + b1, b2 + b3)
// vsubq_f32(a, b) : return a - b;
// vst1q_f32 = store 4 32-bit floats
#if defined __ARM_NEON || defined __aarch64__
#if !defined __aarch64__
// Backport of vpaddq_f32 to ARM32.
inline float32x4_t vpaddq_f32(float32x4_t a, float32x4_t b) {
float32x2_t a10 = vget_low_f32(a);
float32x2_t a32 = vget_high_f32(a);
float32x2_t b10 = vget_low_f32(b);
float32x2_t b32 = vget_high_f32(b);
return vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32));
}
#endif
template <ARInputsMode kInputsMode, bool SplitGates>
void GoThroughGatesFloat(int start, int end, const float* qr_ptr,
const float* gru_gates_ptr,
const float* gru_gates_other_ptr,
const float* conditioning_ptr, float* gru_h_ptr,
const float* w_hat, int proj_size,
const float* coarse_at_sminus1,
const float* fine_at_sminus1,
const float* coarse_at_s) {
// Increment all the pointers to save on pointer arithmetic in the loop.
conditioning_ptr += start;
gru_h_ptr += start;
gru_gates_ptr += start;
if (SplitGates) {
DCHECK_NE(gru_gates_other_ptr, nullptr);
gru_gates_other_ptr += start;
}
if (kInputsMode != ARInputsMode::k0ARInputs) {
DCHECK_NE(qr_ptr, nullptr);
qr_ptr += 2 * start;
DCHECK_NE(coarse_at_sminus1, nullptr);
DCHECK_NE(fine_at_sminus1, nullptr);
if (kInputsMode == ARInputsMode::k3ARInputs) {
DCHECK_NE(w_hat, nullptr);
DCHECK_NE(coarse_at_s, nullptr);
w_hat += start;
}
}
for (int i = start; i < end; i += kNeonSIMDWidth) {
float32x4_t reset = vld1q_f32(gru_gates_ptr);
float32x4_t update = vld1q_f32(gru_gates_ptr + proj_size);
float32x4_t cell = vld1q_f32(gru_gates_ptr + 2 * proj_size);
float32x4_t qr_cell;
if (SplitGates) {
reset = vaddq_f32(reset, vld1q_f32(gru_gates_other_ptr));
update = vaddq_f32(update, vld1q_f32(gru_gates_other_ptr + proj_size));
cell = vaddq_f32(cell, vld1q_f32(gru_gates_other_ptr + 2 * proj_size));
}
if (kInputsMode != ARInputsMode::k0ARInputs) {
// Setup the sample vector.
float32x4_t sample = vdupq_n_f32(*coarse_at_sminus1);
sample = vsetq_lane_f32(*fine_at_sminus1, sample, 1);
sample = vsetq_lane_f32(*fine_at_sminus1, sample, 3);
// All auto types are float32x4_t, auto used to fit statements on one line
// for readability. Do two rows of QR at once.
auto qr_reset_0 = vmulq_f32(vld1q_f32(qr_ptr), sample);
auto qr_reset_1 = vmulq_f32(vld1q_f32(qr_ptr + 4), sample);
auto qr_reset = vpaddq_f32(qr_reset_0, qr_reset_1);
auto qr_update_0 = vmulq_f32(vld1q_f32(qr_ptr + 2 * proj_size), sample);
auto qr_update_1 =
vmulq_f32(vld1q_f32(qr_ptr + 4 + 2 * proj_size), sample);
auto qr_update = vpaddq_f32(qr_update_0, qr_update_1);
auto qr_cell_0 = vmulq_f32(vld1q_f32(qr_ptr + 4 * proj_size), sample);
auto qr_cell_1 = vmulq_f32(vld1q_f32(qr_ptr + 4 + 4 * proj_size), sample);
qr_cell = vpaddq_f32(qr_cell_0, qr_cell_1);
if (kInputsMode == ARInputsMode::k3ARInputs) {
float32x4_t w_sample = vdupq_n_f32(*coarse_at_s);
qr_reset = vmlaq_f32(qr_reset, vld1q_f32(w_hat), w_sample);
qr_update =
vmlaq_f32(qr_update, vld1q_f32(w_hat + proj_size), w_sample);
qr_cell =
vmlaq_f32(qr_cell, vld1q_f32(w_hat + 2 * proj_size), w_sample);
}
reset = vaddq_f32(reset, qr_reset);
update = vaddq_f32(update, qr_update);
}
auto reset_conditioning = vld1q_f32(conditioning_ptr);
auto update_conditioning = vld1q_f32(conditioning_ptr + proj_size);
auto cell_conditioning = vld1q_f32(conditioning_ptr + 2 * proj_size);
reset = fast_sigmoid(vaddq_f32(reset, reset_conditioning));
update = fast_sigmoid(vaddq_f32(update, update_conditioning));
if (kInputsMode == ARInputsMode::k0ARInputs) {
cell = vmulq_f32(reset, cell);
} else {
cell = vmlaq_f32(qr_cell, reset, cell);
}
auto hbar = fast_tanh(vaddq_f32(cell, cell_conditioning));
auto prev_h = vld1q_f32(gru_h_ptr);
auto diff = vsubq_f32(prev_h, hbar);
auto new_h = vmlaq_f32(hbar, diff, update);
vst1q_f32(gru_h_ptr, new_h);
// Increment all the pointers.
conditioning_ptr += kNeonSIMDWidth;
gru_h_ptr += kNeonSIMDWidth;
gru_gates_ptr += kNeonSIMDWidth;
if (SplitGates) gru_gates_other_ptr += kNeonSIMDWidth;
if (kInputsMode != ARInputsMode::k0ARInputs) {
qr_ptr += 2 * kNeonSIMDWidth;
if (kInputsMode == ARInputsMode::k3ARInputs) w_hat += kNeonSIMDWidth;
}
}
}
// This version should only be used if all of the 32-bit fixed point
// representations have the same number of mantissa bits.
// |ar_at_sminus1| packs sample 0 and 1 into a pair because the QR weights are
// formatted with the weights interleaved for sample 0 and 1. The two samples
// represent coarse and fine for WaveRNN.
template <typename GRUStateType, typename GRUMatMulOutType,
ARInputsMode kInputsMode, bool SplitGates>
void GoThroughGatesFixed(int start, int end, const float* qr_ptr,
const int32_t* gru_gates_ptr,
const int32_t* gru_gates_other_ptr,
const int32_t* conditioning_ptr, int16_t* gru_h_ptr,
const float* w_hat, int proj_size,
const std::pair<float, float>* ar_at_sminus1,
const float* coarse_at_s) {
// Increment all the pointers to save on pointer arithmetic in the loop.
conditioning_ptr += start;
gru_h_ptr += start;
gru_gates_ptr += start;
if (SplitGates) {
DCHECK_NE(gru_gates_other_ptr, nullptr);
gru_gates_other_ptr += start;
}
float32x4_t sample01;
float32x4_t w_sample;
if (kInputsMode != ARInputsMode::k0ARInputs) {
DCHECK_NE(qr_ptr, nullptr);
qr_ptr += 2 * start;
DCHECK_NE(ar_at_sminus1, nullptr);
sample01 = vdupq_n_f32(ar_at_sminus1->first);
sample01 = vsetq_lane_f32(ar_at_sminus1->second, sample01, 1);
sample01 = vsetq_lane_f32(ar_at_sminus1->second, sample01, 3);
if (kInputsMode == ARInputsMode::k3ARInputs) {
DCHECK_NE(w_hat, nullptr);
DCHECK_NE(coarse_at_s, nullptr);
w_hat += start;
w_sample = vdupq_n_f32(*coarse_at_s);
}
}
for (int i = start; i < end; i += kNeonSIMDWidth) {
auto reset = vld1q_s32(gru_gates_ptr);
auto update = vld1q_s32(gru_gates_ptr + proj_size);
// vcvtq_n_f32_s32 = convert 32-bit fixed point to fp32
auto cell_int = vld1q_s32(gru_gates_ptr + 2 * proj_size);
if (SplitGates) {
reset = vaddq_s32(reset, vld1q_s32(gru_gates_other_ptr));
update = vaddq_s32(update, vld1q_s32(gru_gates_other_ptr + proj_size));
cell_int =
vaddq_s32(cell_int, vld1q_s32(gru_gates_other_ptr + 2 * proj_size));
}
float32x4_t cell =
vcvtq_n_f32_s32(cell_int, GRUMatMulOutType::kMantissaBits);
float32x4_t qr_cell;
if (kInputsMode != ARInputsMode::k0ARInputs) {
// Do two rows of QR at once.
float32x4_t qr_reset_0 = vmulq_f32(vld1q_f32(qr_ptr), sample01);
float32x4_t qr_reset_1 = vmulq_f32(vld1q_f32(qr_ptr + 4), sample01);
float32x4_t qr_reset = vpaddq_f32(qr_reset_0, qr_reset_1);
float32x4_t qr_update_0 =
vmulq_f32(vld1q_f32(qr_ptr + 2 * proj_size), sample01);
float32x4_t qr_update_1 =
vmulq_f32(vld1q_f32(qr_ptr + 4 + 2 * proj_size), sample01);
float32x4_t qr_update = vpaddq_f32(qr_update_0, qr_update_1);
float32x4_t qr_cell_0 =
vmulq_f32(vld1q_f32(qr_ptr + 4 * proj_size), sample01);
float32x4_t qr_cell_1 =
vmulq_f32(vld1q_f32(qr_ptr + 4 + 4 * proj_size), sample01);
qr_cell = vpaddq_f32(qr_cell_0, qr_cell_1);
if (kInputsMode == ARInputsMode::k3ARInputs) {
float32x4_t w_sample = vdupq_n_f32(*coarse_at_s);
qr_reset = vmlaq_f32(qr_reset, vld1q_f32(w_hat), w_sample);
qr_update =
vmlaq_f32(qr_update, vld1q_f32(w_hat + proj_size), w_sample);
qr_cell =
vmlaq_f32(qr_cell, vld1q_f32(w_hat + 2 * proj_size), w_sample);
}
reset = vaddq_s32(
reset, vcvtq_n_s32_f32(qr_reset, GRUMatMulOutType::kMantissaBits));
update = vaddq_s32(
update, vcvtq_n_s32_f32(qr_update, GRUMatMulOutType::kMantissaBits));
}
auto reset_conditioning = vld1q_s32(conditioning_ptr);
auto update_conditioning = vld1q_s32(conditioning_ptr + proj_size);
float32x4_t cell_conditioning =
vcvtq_n_f32_s32(vld1q_s32(conditioning_ptr + 2 * proj_size),
GRUMatMulOutType::kMantissaBits);
float32x4_t reset_f32 = fast_sigmoid<GRUMatMulOutType::kExponentBits>(
vaddq_s32(reset, reset_conditioning));
float32x4_t update_f32 = fast_sigmoid<GRUMatMulOutType::kExponentBits>(
vaddq_s32(update, update_conditioning));
if (kInputsMode == ARInputsMode::k0ARInputs) {
cell = vmulq_f32(reset_f32, cell);
} else {
cell = vmlaq_f32(qr_cell, reset_f32, cell);
}
float32x4_t hbar = fast_tanh(vaddq_f32(cell, cell_conditioning));
float32x4_t prev_h = vcvtq_n_f32_s32(vmovl_s16(vld1_s16(gru_h_ptr)),
GRUStateType::kMantissaBits);
float32x4_t diff = vsubq_f32(prev_h, hbar);
float32x4_t new_h = vmlaq_f32(hbar, diff, update_f32);
// vcvtq_n_s32_f32 = convert fp32 to signed 32-bit fixed point
// vqrshrn_n_s32 = saturating, rounding, narrowing right shift - used to
// convert a 32-bit fixed point value to a 16-bit fixed point value
vst1_s16(gru_h_ptr,
vqrshrn_n_s32(
vcvtq_n_s32_f32(new_h, GRUStateType::kMantissaBits + 16), 16));
// Increment all the pointers.
conditioning_ptr += kNeonSIMDWidth;
gru_h_ptr += kNeonSIMDWidth;
gru_gates_ptr += kNeonSIMDWidth;
if (SplitGates) gru_gates_other_ptr += kNeonSIMDWidth;
if (kInputsMode != ARInputsMode::k0ARInputs) {
qr_ptr += 2 * kNeonSIMDWidth;
if (kInputsMode == ARInputsMode::k3ARInputs) w_hat += kNeonSIMDWidth;
}
}
}
#endif // defined __ARM_NEON || defined __aarch64__
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_
|