File size: 41,941 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LYRA_CODEC_SPARSE_MATMUL_VECTOR_CACHE_ALIGNED_VECTOR_H_
#define LYRA_CODEC_SPARSE_MATMUL_VECTOR_CACHE_ALIGNED_VECTOR_H_

#if defined __aarch64__
#include <arm_neon.h>
#endif
#if defined __AVX__ || defined __AVX2__
#include <immintrin.h>
#endif

#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <random>
#include <type_traits>

#include "absl/strings/str_format.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/type_utils.h"
#include "sparse_matmul/os/coop_threads.h"
#include "sparse_matmul/vector/aligned_malloc.h"

namespace csrblocksparse {

template <typename T>
class MutableVectorView;
template <typename T>
class VectorView;

// CacheAlignedVector is a simple vector-like class that makes sure its
// underlying buffer is aligned to a |kCacheLineSize| boundary.  It is meant
// for numeric computation and cannot be used to store objects that are
// not POD as it will neither call their constructors nor destructors.
//
// It is meant to be used with the CSRBlockSparseMatrix class for
// implenting basic neural network layers composed of SpMV.
//
// This class is thread compatible.
template <typename DataType>
class CacheAlignedVector {
  static_assert(std::is_pod<DataType>::value,
                "CacheAlignedVector can only be"
                " used with POD");

 public:
  using value_type = DataType;

  explicit CacheAlignedVector(std::size_t size) : size_(size), data_(nullptr) {
    gen_ = absl::make_unique<std::minstd_rand>(0);
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
  }

  explicit CacheAlignedVector(const std::vector<DataType>& input)
      : size_(input.size()), data_(nullptr) {
    gen_ = absl::make_unique<std::minstd_rand>(0);
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
    memcpy(data_, input.data(), size_ * sizeof(DataType));
  }

  template <typename InputType>
  explicit CacheAlignedVector(const std::vector<InputType>& input)
      : size_(input.size()), data_(nullptr) {
    gen_ = absl::make_unique<std::minstd_rand>(0);
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
    for (int i = 0; i < size_; ++i)
      data_[i] = static_cast<DataType>(input.data()[i]);
  }

  CacheAlignedVector(const DataType* input, int size)
      : size_(size), data_(nullptr) {
    gen_ = absl::make_unique<std::minstd_rand>(0);
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
    memcpy(data_, input, size_ * sizeof(DataType));
  }

  template <typename InputType>
  explicit CacheAlignedVector(const InputType* input, int size)
      : size_(size), data_(nullptr) {
    gen_ = absl::make_unique<std::minstd_rand>(0);
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
    for (int i = 0; i < size_; ++i) data_[i] = static_cast<DataType>(input[i]);
  }

  CacheAlignedVector() : size_(0), data_(nullptr) {}

  ~CacheAlignedVector() {
    aligned_free(data_);
    data_ = nullptr;
    size_ = 0;
  }

  // Copies are _deep_ copies
  CacheAlignedVector(CacheAlignedVector const& other)
      : size_(0), data_(nullptr), gen_(nullptr) {
    if (other.gen_)
      gen_ = absl::make_unique<std::minstd_rand>(std::minstd_rand(*other.gen_));
    this->resize(other.size());
    memcpy(data_, other.data(), size_ * sizeof(DataType));
  }
  // Copies a slice of the input.
  CacheAlignedVector(CacheAlignedVector const& other, int start, int end)
      : size_(0), data_(nullptr), gen_(nullptr) {
    if (other.gen_)
      gen_ = absl::make_unique<std::minstd_rand>(std::minstd_rand(*other.gen_));
    this->resize(end - start);
    memcpy(data_, other.data() + start, size_ * sizeof(DataType));
  }

  void operator=(CacheAlignedVector const& other) {
    if (other.gen_)
      gen_ = absl::make_unique<std::minstd_rand>(std::minstd_rand(*other.gen_));
    else
      gen_.reset(nullptr);
    this->resize(other.size());
    memcpy(data_, other.data(), size_ * sizeof(DataType));
  }

  CacheAlignedVector(CacheAlignedVector<DataType>&& other)
      : size_(0), data_(nullptr), gen_(std::move(other.gen_)) {
    size_ = other.size_;
    data_ = other.data_;
    other.size_ = 0;
    other.data_ = nullptr;
  }

  CacheAlignedVector<DataType>& operator=(
      CacheAlignedVector<DataType>&& other) {
    aligned_free(data_);
    if (other.gen_)
      gen_ = absl::make_unique<std::minstd_rand>(std::move(*other.gen_));
    else
      gen_.reset(nullptr);
    size_ = other.size_;
    data_ = other.data_;
    other.size_ = 0;
    other.data_ = nullptr;
    return *this;
  }

  VectorView<DataType> AsView() const {
    return VectorView<DataType>(this->data(), this->size(), 1);
  }

  MutableVectorView<DataType> AsMutableView() {
    return MutableVectorView<DataType>(this->data(), this->size(), 1);
  }

  // Copies the |split_points| to use in ReducingSample.
  void PrepareForThreads(const std::vector<int>& split_points,
                         int block_height) {
    maxes_.resize(split_points.size() - 1);
    thread_starts_ = split_points;
    for (int t = 0; t < thread_starts_.size(); ++t) {
      thread_starts_[t] *= block_height;
    }
  }

  void FillRandom(float min = -10.f, float max = 10.f) {
    // 10 is smaller than any nonzero bound of the range of any data type.
    std::uniform_real_distribution<float> dist(min, max);
    for (std::size_t i = 0; i < size_; i++) {
      data_[i] = DataType(dist(*gen_));
    }
  }

  void FillZero() {
    for (std::size_t i = 0; i < size_; i++) {
      data_[i] = DataType(0.f);
    }
  }

  void FillOnes() {
    for (std::size_t i = 0; i < size_; i++) {
      data_[i] = DataType(1.f);
    }
  }

  void FillWith(const DataType& value) {
    for (std::size_t i = 0; i < size_; i++) {
      data_[i] = value;
    }
  }

  // Interprets |data_| as logits and samples from the distribution, this
  // version operates IN PLACE and uses an internal random source.
  template <class Q = DataType>
  typename std::enable_if<std::is_same<Q, float>::value, int>::type Sample(
      float temperature = 1.f) {
    return Sample(temperature, gen_.get(), this);
  }

  // Interprets |data_| as logits and samples.  This version requires the random
  // source and temporary memory to be passed in.  It is thread safe assuming
  // no other threads are using the generator and temporary memory.
#if defined __aarch64__
  template <class Q = DataType>
  typename std::enable_if<std::is_same<Q, float>::value, int>::type Sample(
      float temperature, std::minstd_rand* gen,
      CacheAlignedVector<float>* scratch) const {
    DCHECK(scratch->size() >= size_);
    // Round down to nearest multiple of 8.
    int SIMD_iterations = 8 * (size_ / 8);
    float* scratch_ptr = scratch->data();
    std::uniform_real_distribution<float> dist;
    float random_number = dist(*gen);

    float32x4_t sum = vdupq_n_f32(0.f);
    float32x4_t sum1 = vdupq_n_f32(0.f);
    float32x4_t max_value = vdupq_n_f32(std::numeric_limits<float>::lowest());
    float32x4_t max_value1 = vdupq_n_f32(std::numeric_limits<float>::lowest());
    float32x4_t inv_temp = vdupq_n_f32(1.f / temperature);
    // Compute sum of exp(x) for the denominator.
    // Hand unroll by 2, gives speed improvement.
    constexpr int kUnrollFactor = 2;
    constexpr int kElementsPerIter = kUnrollFactor * kSIMDWidth;
    for (std::size_t i = 0; i < SIMD_iterations; i += kElementsPerIter) {
      max_value = vmaxq_f32(vld1q_f32(data_ + i), max_value);
      max_value1 = vmaxq_f32(vld1q_f32(data_ + i + 4), max_value1);
    }

    // Pairwise reduction.
    max_value = vpmaxq_f32(max_value, max_value1);
    // Duplicate (dupq) maximum across vector (maxnmvq).
    float scalar_max_value = vmaxvq_f32(max_value);

    for (int i = SIMD_iterations; i < size_; ++i) {
      scalar_max_value = std::max(data_[i], scalar_max_value);
    }

    max_value = vdupq_n_f32(scalar_max_value);

    for (std::size_t i = 0; i < SIMD_iterations; i += kElementsPerIter) {
      // Load and multiply by temperature.
      float32x4_t x =
          vmulq_f32(vsubq_f32(vld1q_f32(data_ + i), max_value), inv_temp);
      float32x4_t x1 =
          vmulq_f32(vsubq_f32(vld1q_f32(data_ + i + 4), max_value), inv_temp);

      float32x4_t exponent = fast_exp(x);
      float32x4_t exponent1 = fast_exp(x1);

      sum = vaddq_f32(sum, exponent);
      sum1 = vaddq_f32(sum1, exponent1);

      vst1q_f32(scratch_ptr + i, exponent);
      vst1q_f32(scratch_ptr + i + 4, exponent1);
    }

    // Horizontally reduce the two sums.
    sum = vpaddq_f32(sum, sum1);
    sum = vpaddq_f32(sum, sum);
    float denom = vgetq_lane_f32(sum, 0) + vgetq_lane_f32(sum, 1);

    for (int i = SIMD_iterations; i < size_; ++i) {
      float x = (data_[i] - scalar_max_value) / temperature;
      float x_exp = expf(x);
      denom += x_exp;
      scratch_ptr[i] = x_exp;
    }

    // Note: rather than normalize all the probabilities, we can just
    // apply the inverse normalization to the random number.
    random_number *= denom;

    // Now do the scan in serial, return as soon as possible.
    // TODO(b/188821456): This could be made into a parallel SIMD scan
    // followed by a binary search, for a small speedup.
    float cumsum = 0.f;
    for (std::size_t i = 0; i < size_; i++) {
      cumsum += scratch_ptr[i];
      if (cumsum >= random_number) return i;
    }
    return size_ - 1;
  }

  template <class Q = DataType>
  static inline int32x4_t vmul_temp_fixed(int32x4_t x, int32x2_t inv_temp) {
    int32x2_t xh = vget_high_s32(x);
    int32x2_t xl = vget_low_s32(x);
    int32x2_t ph = vqrshrn_n_s64(vmull_s32(xh, inv_temp), Q::kMantissaBits);
    int32x2_t pl = vqrshrn_n_s64(vmull_s32(xl, inv_temp), Q::kMantissaBits);
    return vcombine_s32(pl, ph);
  }

  template <class Q = DataType>
  static inline int float_to_fixed(float x) {
    return static_cast<int>(x * (1 << Q::kMantissaBits));
  }

  template <class Q = DataType>
  static inline float fixed_to_float(int x) {
    const float inv_denom = 1.f / (1 << Q::kMantissaBits);
    return static_cast<float>(x) * inv_denom;
  }

  template <class Q = DataType>
  typename std::enable_if<IsFixed32Type<Q>::value, int>::type Sample(
      float temperature, std::minstd_rand* gen,
      CacheAlignedVector<int>* scratch) const {
    DCHECK(scratch->size() >= size_);
    // Round down to nearest multiple of 8.
    int SIMD_iterations = 8 * (size_ / 8);
    int* scratch_ptr = scratch->data();
    float scalar_inv_temp = 1.f / temperature;

    int32x4_t sum = vdupq_n_s32(0);
    int32x4_t sum1 = vdupq_n_s32(0);
    int32x4_t max_value = vdupq_n_s32(std::numeric_limits<int>::lowest());
    int32x4_t max_value1 = vdupq_n_s32(std::numeric_limits<int>::lowest());
    int32x2_t inv_temp = vdup_n_s32(float_to_fixed(scalar_inv_temp));
    // Compute sum of exp(x) for the denominator.
    // Hand unroll by 2, gives speed improvement.

    const int* data_ptr = reinterpret_cast<int*>(data_);
    constexpr int kUnrollFactor = 2;
    constexpr int kElementsPerIter = kUnrollFactor * kSIMDWidth;
    for (std::size_t i = 0; i < SIMD_iterations; i += kElementsPerIter) {
      max_value = vmaxq_s32(vld1q_s32(data_ptr + i), max_value);
      max_value1 = vmaxq_s32(vld1q_s32(data_ptr + i + kSIMDWidth), max_value1);
    }

    // Pairwise reduction.
    max_value = vpmaxq_s32(max_value, max_value1);
    int scalar_max_value = vmaxvq_s32(max_value);

    for (int i = SIMD_iterations; i < size_; ++i) {
      scalar_max_value = std::max(data_[i].raw_val(), scalar_max_value);
    }
    max_value = vdupq_n_s32(scalar_max_value);
    // We clip all loaded values to a lower bound of the lowest possible arg to
    // exp + the max value that we are going to subtract, to prevent underflow
    // in exp and also to avoid wrap-around with values that are already minint.
    int32x4_t clip_min =
        vdupq_n_s32(scalar_max_value - (80 << MantissaBitsOf<Q>::value));

    for (std::size_t i = 0; i < SIMD_iterations; i += kElementsPerIter) {
      // Load and multiply by temperature.
      int32x4_t loaded = vmaxq_s32(vld1q_s32(data_ptr + i), clip_min);
      int32x4_t x = vmul_temp_fixed(vsubq_s32(loaded, max_value), inv_temp);
      loaded = vmaxq_s32(vld1q_s32(data_ptr + i + kSIMDWidth), clip_min);
      int32x4_t x1 = vmul_temp_fixed(vsubq_s32(loaded, max_value), inv_temp);

      int32x4_t exponent = vcvtq_n_s32_f32(fast_exp_fixed<Q::kExponentBits>(x),
                                           Q::kMantissaBits);
      int32x4_t exponent1 = vcvtq_n_s32_f32(
          fast_exp_fixed<Q::kExponentBits>(x1), Q::kMantissaBits);

      sum = vaddq_s32(sum, exponent);
      sum1 = vaddq_s32(sum1, exponent1);

      vst1q_s32(scratch_ptr + i, exponent);
      vst1q_s32(scratch_ptr + i + kSIMDWidth, exponent1);
    }

    // Horizontally reduce the two sums.
    sum = vpaddq_s32(sum, sum1);
    sum = vpaddq_s32(sum, sum);
    float denom =
        fixed_to_float(vgetq_lane_s32(sum, 0) + vgetq_lane_s32(sum, 1));
    for (int i = SIMD_iterations; i < size_; ++i) {
      float x_exp = fast_exp_fixed<Q::kExponentBits>(
          DataType((data_[i].raw_val() - scalar_max_value) * scalar_inv_temp));

      denom += x_exp;
      scratch_ptr[i] = float_to_fixed(x_exp);
    }

    // Note: rather than normalize all the probabilities, we can just
    // apply the inverse normalization to the random number.
    std::uniform_real_distribution<float> dist;
    int random_number = float_to_fixed(dist(*gen) * denom);

    // Now do the scan in serial, return as soon as possible.
    // TODO(b/188821456): This could be made into a parallel SIMD scan
    // followed by a binary search, for a small speedup.
    int cumsum = 0;
    for (std::size_t i = 0; i < size_; i += kSIMDWidth) {
      int32x4_t next_vals = vld1q_s32(&scratch_ptr[i]);
      cumsum += vaddvq_s32(next_vals);
      if (cumsum >= random_number) {
        int high_sum = vaddv_s32(vget_high_s32(next_vals));
        if (cumsum - high_sum > random_number) {
          // One of the lower ones.
          return (cumsum - high_sum - scratch_ptr[i + 1] > random_number)
                     ? i
                     : i + 1;
        } else {
          // One of the upper ones.
          return (cumsum - scratch_ptr[i + 3] > random_number) ? i + 2 : i + 3;
        }
      }
    }
    return size_ - 1;
  }
#endif  // defined __aarch64__

  template <class Q = DataType>
#if defined __aarch64__
  typename std::enable_if<
      !std::is_same<Q, float>::value && !IsFixed32Type<Q>::value, int>::type
#else
  int
#endif
  Sample(float temperature, std::minstd_rand* gen,
         CacheAlignedVector<float>* scratch, int tid = 0,
         SpinBarrier* barrier = nullptr) const {
    return ScalarSample(temperature, gen, scratch, tid, 0, -1, barrier);
  }

  int ScalarSample(float temperature, std::minstd_rand* gen,
                   CacheAlignedVector<float>* scratch, int tid = 0,
                   const int mindex = 0, const int maxdex = -1,
                   SpinBarrier* barrier = nullptr) const {
    // TODO(b/188821456) Don't ignore |tid| and |barrier|. Currently all threads
    // duplicate the same work and ignore |tid| and |barrier|, but they could
    // be used to execute a reducing max over the data before the exp operation.
    DCHECK_EQ(barrier, nullptr);
    DCHECK_EQ(tid, 0);
    DCHECK(scratch->size() >= size_);
    DCHECK(size_ % 8 == 0) << "CacheAlignedVector size must be a multiple of "
                              "8 to allow for maximum SIMD and loop unroll, "
                              "got "
                           << size_ % 8;
    DCHECK(size_ > mindex >= 0);
    DCHECK((maxdex == -1) || (0 <= mindex < maxdex < size_));
    int maxindex = maxdex > 0 ? maxdex : size_;

    float* scratch_ptr = scratch->data();
    std::uniform_real_distribution<float> dist;
    float random_number = dist(*gen);

    float sum = 0.f;
    float max_value = std::numeric_limits<float>::lowest();
    for (int i = mindex; i < maxindex; ++i) {
      max_value = std::max(max_value, static_cast<float>(data_[i]));
    }
    float inv_temperature = 1.f / temperature;
    for (int i = mindex; i < maxindex; ++i) {
      float exponent = fast_exp((static_cast<float>(data_[i]) - max_value) *
                                inv_temperature);
      scratch_ptr[i] = exponent;
      sum += exponent;
    }

    // Note: rather than normalize all the probabilities, we can just
    // apply the inverse normalization to the random number.
    random_number *= sum;

    float cumsum = 0.f;
    for (std::size_t i = mindex; i < maxindex; i++) {
      cumsum += scratch_ptr[i];
      if (cumsum >= random_number) return i;
    }
    return maxindex - 1;
  }

#if defined __AVX2__
  // Some AVX2-only code.
  // Returns the max of |data_| in the range [|t_start|, |t_end|).
  inline int ThreadMax(int t_start, int t_end) const {
    // Note: The AVX2 code requires that the number of threads and the output
    // size be a power of 2. For efficiency purposes, these should be checked
    // when preparing for threads in an architecture class.
    // The output size must be a power of 2 so the binary search for the sample
    // point works correctly.
    // The number of threads must be a power of 2 so that it nicely divides the
    // output size, which has to be a power of 2.
    __m256i maxes =
        _mm256_load_si256(reinterpret_cast<__m256i const*>(data_ + t_start));
    for (int i = t_start + kSIMDWidth; i < t_end; i += kSIMDWidth) {
      __m256i data =
          _mm256_load_si256(reinterpret_cast<__m256i const*>(data_ + i));
      maxes = _mm256_max_epi32(maxes, data);
    }
    // Max within the register.
    // Bring the top lane down to the bottom.
    __m256i other = _mm256_permute4x64_epi64(maxes, 0xe);
    maxes = _mm256_max_epi32(maxes, other);
    // Bring the 2nd 64 bits to the bottom.
    other = _mm256_shuffle_epi32(maxes, 0xe);
    maxes = _mm256_max_epi32(maxes, other);
    // Bring the 2nd 32 bits to the bottom.
    other = _mm256_shuffle_epi32(maxes, 1);
    maxes = _mm256_max_epi32(maxes, other);
    return _mm256_extract_epi32(maxes, 0);
  }

  // Applies exp (approximately) to the difference between |data_| and
  // |max_value|, storing the result in scratch, and returns the sum.
  template <int kMantissaBits>
  inline float ApplyExpAndSum(int max_value, float* scratch_ptr) {
    // Rough approximation for exp(x). See fast_exp_fixed.
    // Constant clipping limit on exp arg. Since its value is never positive,
    // we only need to clip on the negative side.
    constexpr int kClipLimit = -(80 << kMantissaBits);
    __m256i clip_val = _mm256_set1_epi32(kClipLimit);
    // Multiplication factor to convert x from log base e to log base 2, shifted
    // by an amount that lines up the binary point with the float32
    // representation, after the multiplication
    static const int kLogFactor = (1 << (23 - kMantissaBits)) / logf(2.f);
    __m256i log_factor = _mm256_set1_epi32(kLogFactor);
    // Fix the exponent bias and add the additive fudge factor for the mantissa
    // to finish the approximate conversion.
    constexpr int kAddConstant = (127 << 23) - 366000;
    __m256i constant = _mm256_set1_epi32(kAddConstant);
    // Broadcast the max_value.
    __m256i max_val = _mm256_set1_epi32(max_value);
    // Add the max to the |clip_val|, so it can be used before the subtraction.
    clip_val = _mm256_add_epi32(clip_val, max_val);
    // The sum of the exps.
    __m256 sum1 = _mm256_setzero_ps();
    for (int i = 0; i < size_; i += kSIMDWidth) {
      // |data_| - |max_value|.
      __m256i data =
          _mm256_load_si256(reinterpret_cast<__m256i const*>(data_ + i));
      // Clip to negative limit before the subtraction of |max_val| to avoid
      // wrap-around with min-int values.
      data = _mm256_max_epi32(data, clip_val);
      __m256i difference = _mm256_sub_epi32(data, max_val);
      // Exponent trick exp.
      // Multiply by |log_factor|, keeping only the lower 32 bits.
      difference = _mm256_mullo_epi32(difference, log_factor);
      // Add the constant.
      difference = _mm256_add_epi32(difference, constant);
      // Reinterpret the results as float32.
      __m256 float_exp = _mm256_castsi256_ps(difference);
      // Sum the results and save to scratch space.
      _mm256_store_ps(scratch_ptr + i, float_exp);
      sum1 = _mm256_add_ps(sum1, float_exp);
    }
    // Horizontally add the 8 values in sum.
    // Get the top lane down to the bottom.
    __m256 sum2 = _mm256_permute2f128_ps(sum1, sum1, 1);
    sum1 = _mm256_add_ps(sum1, sum2);
    sum1 = _mm256_hadd_ps(sum1, sum1);
    sum1 = _mm256_hadd_ps(sum1, sum1);
    return _mm256_cvtss_f32(sum1);
  }

  // Binary search for the index where the cumulative sum meets random_target.
  inline void FindSamplePoint(const float* scratch_ptr, float* random_target,
                              int* start, int* end) {
    int halfsize = (*end - *start) / 2;
    do {
      // Sum the first half.
      // We sum the section in two independent parts, so we can step down 2
      // levels if we get a hit in this half.
      int quartersize = halfsize / (2 * kSIMDWidth);
      quartersize *= kSIMDWidth;
      halfsize = quartersize * 2;
      // The sums of the quarters.
      __m256 sum1 = _mm256_setzero_ps();
      __m256 sum2 = _mm256_setzero_ps();
      const float* ptr1 = scratch_ptr + *start;
      const float* ptr2 = ptr1 + quartersize;
      for (int i = 0; i < quartersize; i += kSIMDWidth) {
        __m256 data1 = _mm256_load_ps(ptr1 + i);
        __m256 data2 = _mm256_load_ps(ptr2 + i);
        sum1 = _mm256_add_ps(sum1, data1);
        sum2 = _mm256_add_ps(sum2, data2);
      }
      // Horizontally add the two sums, keeping the results separate.
      // Numbering |sum1|=[0-7] and |sum2|=[8-15]...
      sum1 = _mm256_hadd_ps(sum1, sum2);
      // |sum1| now has [0+1, 2+3, 8+9, 10+11, 4+5, 6+7, 12+13, 14+15].
      // Bring the top lane down to the bottom.
      sum2 = _mm256_permute2f128_ps(sum1, sum1, 1);
      sum1 = _mm256_hadd_ps(sum1, sum2);
      // Now |sum1| has [0-3, 8-11, 4-7, 12-15], so swap the middle two
      // elements.
      sum1 = _mm256_shuffle_ps(sum1, sum1, 0xd8);
      sum1 = _mm256_hadd_ps(sum1, sum1);
      // Now |sum1| has [0-7, 8-15, ....].
      float bottom_quarter = _mm256_cvtss_f32(sum1);
      if (bottom_quarter >= *random_target) {
        *end = *start + quartersize;
      } else {
        float bottom_half = _mm256_cvtss_f32(_mm256_hadd_ps(sum1, sum1));
        if (bottom_half >= *random_target) {
          *start += quartersize;
          *end = *start + quartersize;
          *random_target -= bottom_quarter;
        } else {
          *start += halfsize;
          *random_target -= bottom_half;
        }
      }
      halfsize = (*end - *start) / 2;
    } while (halfsize >= kSIMDWidth * 2);
  }
#endif  // __AVX2__ code

  // Fixed32 version.
  template <class Q = DataType>
  typename std::enable_if<IsFixed32Type<Q>::value, int>::type ThreadMax(
      int tid) const {
    int t_start = thread_starts_[tid];
    int t_end = thread_starts_[tid + 1];
#if defined __AVX2__
    return ThreadMax(t_start, t_end);
#else
    // With operator<, could use std::max_element.
    int max_value = data_[t_start].raw_val();
    for (int i = t_start + 1; i < t_end; ++i) {
      max_value = std::max(max_value, data_[i].raw_val());
    }
    return max_value;
#endif
  }

  // As Sample above, except that if |tid| and |barrier| are provided, it will
  // save some time by running a local max in each thread before combining them
  // and doing the rest of the work duplicated across all threads.
  // Fixed32 version.
  template <class Q = DataType>
  typename std::enable_if<!IsFixed32Type<Q>::value, int>::type ReducingSample(
      std::minstd_rand* gen, CacheAlignedVector<float>* scratch, int tid = 0,
      float temperature = 1.0f, SpinBarrier* barrier = nullptr) {
    if (barrier != nullptr) barrier->barrier();
    // Sample only accepts tid of 0, as it would ignore it anyway.
    // All threads duplicate the same work in this path.
    return Sample(temperature, gen, scratch, /*tid=*/0);
  }

  template <class Q = DataType>
  typename std::enable_if<IsFixed32Type<Q>::value, int>::type ReducingSample(
      std::minstd_rand* gen, CacheAlignedVector<float>* scratch, int tid = 0,
      float temperature = 1.0f, SpinBarrier* barrier = nullptr) {
    int max_value;
    if (barrier == nullptr) {
      // There is only one thread.
      max_value = ThreadMax(tid);
    } else {
      // Reduce max using the threads to do some of the work.
      maxes_[tid] = ThreadMax(tid);
      barrier->barrier();
      // The rest of the work is duplicated by all threads.
      max_value = *std::max_element(maxes_.begin(), maxes_.end());
    }
    float* scratch_ptr = scratch->data();
    std::uniform_real_distribution<float> dist;
    float sum = 0.0f;
#if defined __AVX2__
    sum = ApplyExpAndSum<MantissaBitsOf<Q>::value>(max_value, scratch_ptr);
#else
    int clip_limit = max_value - (80 << MantissaBitsOf<Q>::value);
    for (int i = 0; i < size_; ++i) {
      int difference = std::max(data_[i].raw_val(), clip_limit) - max_value;
      float exponent = expf(static_cast<float>(DataType(difference)));
      scratch_ptr[i] = exponent;
      sum += exponent;
    }
#endif  // __AVX2__

    float random_target = dist(*gen) * sum;
    int start = 0;
    int end = size_;

#if defined __AVX2__
    FindSamplePoint(scratch_ptr, &random_target, &start, &end);
    // The scalar code finishes the job from here...
#endif  // __AVX2__
    float cumsum = 0.f;
    for (std::size_t i = start; i < end; i++) {
      cumsum += scratch_ptr[i];
      if (cumsum >= random_target) return i;
    }
    return end - 1;
  }

  template <class Q = DataType>
  typename std::enable_if<std::is_same<Q, float>::value, void>::type Exp() {
#if defined __aarch64__
    DCHECK(size_ % 16 == 0) << "CacheAlignedVector size must be a multiple of "
                               "16 to allow for maximum SIMD and loop unroll "
                               "got "
                            << size_ % 16;
    constexpr int kUnrollFactor = 4;
    constexpr int kElementsPerIter = kUnrollFactor * kSIMDWidth;
    for (std::size_t i = 0; i < size_; i += kElementsPerIter) {
      float32x4_t x = vld1q_f32(data_ + i);
      float32x4_t x1 = vld1q_f32(data_ + i + 4);
      float32x4_t x2 = vld1q_f32(data_ + i + 8);
      float32x4_t x3 = vld1q_f32(data_ + i + 12);

      vst1q_f32(data_ + i, fast_exp(x));
      vst1q_f32(data_ + i + 4, fast_exp(x1));
      vst1q_f32(data_ + i + 8, fast_exp(x2));
      vst1q_f32(data_ + i + 12, fast_exp(x3));
    }
#else
    for (int i = 0; i < size_; ++i) {
      data_[i] = expf(data_[i]);
    }
#endif  // defined __aarch64__
  }

  template <class Q = DataType>
  typename std::enable_if<std::is_same<Q, float>::value, void>::type Sigmoid() {
#if defined __aarch64__
    DCHECK(size_ % 8 == 0) << "CacheAlignedVector size must be a multiple of "
                              "8 to allow for maximum SIMD and loop unroll "
                              "got "
                           << size_ % 8;
    constexpr int kUnrollFactor = 2;
    constexpr int kElementsPerIter = kUnrollFactor * kSIMDWidth;
    for (std::size_t i = 0; i < size_; i += kElementsPerIter) {
      float32x4_t x = vld1q_f32(data_ + i);
      float32x4_t x1 = vld1q_f32(data_ + i + 4);

      vst1q_f32(data_ + i, fast_sigmoid(x));
      vst1q_f32(data_ + i + 4, fast_sigmoid(x1));
    }
#else
    for (int i = 0; i < size_; ++i) {
      data_[i] = 1.f / (1.f + expf(-data_[i]));
    }
#endif  // defined __aarch64__
  }

  template <class Q>
  typename std::enable_if<
      IsFixed32Type<DataType>::value && IsFixed32Type<Q>::value, void>::type
  // For benchmarking only.
  Sigmoid(const int32_t* sigmoid_table, CacheAlignedVector<Q>* result) {
#if defined __AVX2__
    for (int i = 0; i < size_; i += kSIMDWidth) {
      __m256i x_in = _mm256_loadu_si256(reinterpret_cast<__m256i*>(data_ + i));
      __m256i output = fixed32_sigmoid_fixed16<MantissaBitsOf<DataType>::value,
                                               MantissaBitsOf<Q>::value>(
          sigmoid_table, x_in);
      _mm256_store_si256(reinterpret_cast<__m256i*>(result->data() + i),
                         output);
    }
#else
    for (int i = 0; i < size_; ++i) {
      result->data()[i] = 1.f / (1.f + expf(-data_[i]));
    }
#endif  // defined __AVX2__
  }

  template <class Q = DataType>
  typename std::enable_if<std::is_same<Q, float>::value, void>::type Tanh() {
#if defined __aarch64__
    DCHECK(size_ % 8 == 0) << "CacheAlignedVector size must be a multiple of "
                              "8 to allow for maximum SIMD and loop unroll "
                              "got "
                           << size_ % 8;
    constexpr int kUnrollFactor = 2;
    constexpr int kElementsPerIter = kUnrollFactor * kSIMDWidth;
    for (std::size_t i = 0; i < size_; i += kElementsPerIter) {
      float32x4_t x = vld1q_f32(data_ + i);
      float32x4_t x1 = vld1q_f32(data_ + i + 4);

      vst1q_f32(data_ + i, fast_tanh(x));
      vst1q_f32(data_ + i + 4, fast_tanh(x1));
    }
#else
    for (int i = 0; i < size_; ++i) {
      data_[i] = tanhf(data_[i]);
    }
#endif  // defined __aarch64__
  }

  template <class Q>
  typename std::enable_if<
      IsFixed32Type<DataType>::value && IsFixed32Type<Q>::value, void>::type
  // For benchmarking only
  Tanh(const int32_t* tanh_table, CacheAlignedVector<Q>* result) {
#if defined __AVX2__
    for (int i = 0; i < size_; i += kSIMDWidth) {
      __m256i x_in = _mm256_loadu_si256(reinterpret_cast<__m256i*>(data_ + i));
      __m256i output =
          fixed32_tanh_fixed16<MantissaBitsOf<DataType>::value,
                               MantissaBitsOf<Q>::value>(tanh_table, x_in);
      _mm256_store_si256(reinterpret_cast<__m256i*>(result->data() + i),
                         output);
    }
#else
    for (int i = 0; i < size_; ++i) {
      result->data()[i] = tanhf(data_[i]);
    }
#endif  // defined __AVX2__
  }

  // Returns |data_| cast to the correct integer type if fixed point.
  template <class Q = DataType>
  typename std::enable_if<IsFixed32Type<Q>::value, const int32_t*>::type
  cast_data() const {
    return reinterpret_cast<const int32_t*>(data_);
  }
  template <class Q = DataType>
  typename std::enable_if<IsFixed16Type<Q>::value, const int16_t*>::type
  cast_data() const {
    return reinterpret_cast<const int16_t*>(data_);
  }
  template <class Q = DataType>
  typename std::enable_if<!(IsFixed32Type<Q>::value || IsFixed16Type<Q>::value),
                          const Q*>::type
  cast_data() const {
    return data_;
  }
  const DataType* begin() const { return data_; }
  const DataType* end() const { return data_ + size_; }
  const DataType* data() const { return data_; }
  DataType* data() { return data_; }

  const DataType& operator[](int pos) const { return data_[pos]; }
  DataType& operator[](int pos) { return data_[pos]; }

  std::size_t size() const { return size_; }
  bool empty() const { return size_ == 0; }
  std::size_t bytes() const { return size_ * sizeof(DataType); }

  int rows() const { return size_; }
  int cols() const { return 1; }

  // Stride to get to move over by one column (which is the number of rows).
  int col_stride() const { return size_; }

  void Print() const {
    for (int i = 0; i < size(); ++i)
      absl::PrintF("[%d]=%g\n", i, static_cast<float>(data_[i]));
  }

  float maximum() const {
    float max_val = std::numeric_limits<float>::lowest();
    for (int i = 0; i < size_; ++i) {
      max_val = std::max(max_val, std::abs(static_cast<float>(data_[i])));
    }

    return max_val;
  }

 private:
  void resize(std::size_t size) {
    aligned_free(data_);
    size_ = size;
    data_ = reinterpret_cast<DataType*>(
        aligned_malloc(size_ * sizeof(DataType), kCacheLineSize));
  }

  std::size_t size_;
  DataType* data_;
  // Data used by the threaded version for sampling only.
  std::vector<int> maxes_;          // Max value of logits.
  std::vector<int> thread_starts_;  // First index for this thread.
#if defined __AVX__ || defined __AVX2__
  static constexpr int kCacheLineSize = 64;
  static constexpr int kSIMDWidth = 8;
#else
  static constexpr int kCacheLineSize = 128;
  static constexpr int kSIMDWidth = 4;
#endif  // __AVX__
  std::unique_ptr<std::minstd_rand> gen_;
};

// Used for doing Sparse Matrix * Dense Matrix multiplication.  This class is
// not intended to be a general Matrix class, just for the RHS of a SpMM, hence
// the name fat vector rather than Matrix.  The data layout is COLUMN MAJOR.
template <typename T>
class FatCacheAlignedVector {
 public:
  using value_type = T;

  FatCacheAlignedVector() : rows_(0), cols_(0) {}

  // Creates a new vector that is (rows, cols), doesn't init memory.
  FatCacheAlignedVector(int rows, int cols)
      : vector_(rows * cols), rows_(rows), cols_(cols) {}

  // Copies and reshapes vector from (1, size) to (|rows|, size / |rows|).
  FatCacheAlignedVector(const CacheAlignedVector<T>& vector, int rows)
      : vector_(vector), rows_(rows) {
    CHECK_EQ(vector_.size() % rows_, 0);
    cols_ = vector_.size() / rows_;
  }

  template <typename U>
  explicit FatCacheAlignedVector(const FatCacheAlignedVector<U>& vector)
      : vector_(vector.size()), rows_(vector.rows()), cols_(vector.cols()) {
    for (int i = 0; i < vector.size(); ++i) {
      vector_[i] = static_cast<T>(vector[i]);
    }
  }

  // Moves and reshapes vector from (1, size) to (|rows|, size / |rows|)
  FatCacheAlignedVector(CacheAlignedVector<T>&& vector, int rows)
      : vector_(vector), rows_(rows) {
    CHECK_EQ(vector_.size() % rows_, 0);
    cols_ = vector_.size() / rows_;
  }

  VectorView<T> slice(const int col) const {
    return VectorView<T>(this->data() + rows() * col, rows(), 1);
  }
  MutableVectorView<T> slice(const int col) {
    return MutableVectorView<T>(this->data() + rows() * col, rows(), 1);
  }

  const T* data() const { return vector_.data(); }
  T* data() { return vector_.data(); }
  // Returns |data_| cast to the correct integer type if fixed point.
  template <class Q = T>
  typename std::enable_if<IsFixed32Type<Q>::value, const int32_t*>::type
  cast_data() const {
    return vector_.cast_data();
  }
  template <class Q = T>
  typename std::enable_if<IsFixed16Type<Q>::value, const int16_t*>::type
  cast_data() const {
    return vector_.cast_data();
  }
  template <class Q = T>
  typename std::enable_if<!(IsFixed32Type<Q>::value || IsFixed16Type<Q>::value),
                          const Q*>::type
  cast_data() const {
    return vector_.cast_data();
  }

  int rows() const { return rows_; }
  int cols() const { return cols_; }
  int size() const { return rows_ * cols_; }
  bool empty() const { return rows_ == 0 || cols_ == 0; }
  std::size_t bytes() const { return vector_.bytes(); }

  void reshape(int rows, int cols) {
    CHECK_EQ(rows * cols, rows_ * cols_);
    rows_ = rows;
    cols_ = cols;
  }

  float maximum() const { return vector_.maximum(); }

  // Stride to get to move over by one column (which is the number of rows).
  int col_stride() const { return rows_; }

  void FillOnes() { vector_.FillOnes(); }
  void FillZero() { vector_.FillZero(); }
  void FillRandom(float min = -10.f, float max = 10.f) {
    vector_.FillRandom(min, max);
  }

  const T& operator[](int pos) const { return vector_[pos]; }
  T& operator[](int pos) { return vector_[pos]; }

 private:
  CacheAlignedVector<T> vector_;
  int rows_;
  int cols_;
};

// View into a 2D Matrix.  Currently only supports partitions by row.  This is
// expected to be used with underlying data that is COLUMN MAJOR.
template <typename T>
class MutableVectorView {
 public:
  using value_type = T;

  // Construct from a raw pointer, |rows|, |cols| and |col_stride|.
  // |col_stride| will default to |rows| if not specified.
  explicit MutableVectorView(T* data = nullptr, int rows = 0, int cols = 0,
                             int col_stride = 0)
      : data_(data),
        rows_(rows),
        cols_(cols),
        col_stride_(col_stride > 0 ? col_stride : rows) {}

  // Construct from a CacheAlignedVector, must have one column, can optionally
  // specify an offset and row count.
  explicit MutableVectorView(CacheAlignedVector<T>* vector)
      : MutableVectorView(vector->data(), vector->rows(), 1) {}

  explicit MutableVectorView(CacheAlignedVector<T>* vector, int pos = 0,
                             int rows = 0)
      : MutableVectorView(vector->data() + pos,
                          rows == 0 ? vector->rows() - pos : rows, 1,
                          vector->rows()) {}

  // Construct from a FatCacheAlignedVector, can optionally specify an offset,
  // and row count.  Views that have fewer columns than the original are not
  // supported.
  explicit MutableVectorView(FatCacheAlignedVector<T>* vector)
      : MutableVectorView(vector->data(), vector->rows(), vector->cols()) {}

  MutableVectorView(FatCacheAlignedVector<T>* vector, int pos, int rows)
      : MutableVectorView(vector->data() + pos, rows, vector->cols(),
                          vector->rows()) {}

  T* data() { return data_; }
  const T* data() const { return data_; }

  // Returns |data_| cast to the correct integer type if fixed point.
  template <class Q = T>
  typename std::enable_if<IsFixed32Type<Q>::value, const int32_t*>::type
  cast_data() const {
    return reinterpret_cast<const int32_t*>(data_);
  }
  template <class Q = T>
  typename std::enable_if<IsFixed16Type<Q>::value, const int16_t*>::type
  cast_data() const {
    return reinterpret_cast<const int16_t*>(data_);
  }
  template <class Q = T>
  typename std::enable_if<!(IsFixed32Type<Q>::value || IsFixed16Type<Q>::value),
                          const Q*>::type
  cast_data() const {
    return data_;
  }

  // Number of columns in the underlying (Fat)CacheAlignedVector.
  int cols() const { return cols_; }

  // Number of rows in this view.
  int rows() const { return rows_; }

  // Returns true if there's nothing in the MutableVectorView.
  bool empty() const { return rows_ == 0 || cols_ == 0; }

  // Stride to get to the next column (usually the number of rows in the
  // underlying data structure).
  int col_stride() const { return col_stride_; }

  // Returns the total number of bytes that are "owned" by this view. Uses
  // cols and not col_stride.
  std::size_t bytes() const { return rows_ * cols_ * sizeof(T); }

  void reshape(int rows, int cols) {
    CHECK_EQ(rows * cols, rows_ * cols_);
    rows_ = rows;
    cols_ = cols;
    col_stride_ = rows_;
  }

  const T& operator[](int pos) const { return data_[pos]; }
  T& operator[](int pos) { return data_[pos]; }

 protected:
  T* data_;
  int rows_;
  int cols_;
  int col_stride_;
};

// Specialization of MutableVectorView which is read-only.
template <typename T>
class VectorView : public MutableVectorView<const T> {
 public:
  using value_type = T;

  explicit VectorView(const MutableVectorView<T>& other)
      : MutableVectorView<const T>(other.data(), other.rows(), other.cols(),
                                   other.col_stride()) {}

  // Construct from a raw pointer, |rows|, |cols| and |col_stride|.
  // |col_stride| will default to |rows| if not specified.
  explicit VectorView(const T* data = nullptr, int rows = 0, int cols = 0,
                      int col_stride = 0)
      : MutableVectorView<const T>(data, rows, cols, col_stride) {}

  // Construct from a CacheAlignedVector, must have one column, can optionally
  // specify an offset and row count
  explicit VectorView(const CacheAlignedVector<T>& vector)
      : MutableVectorView<const T>(vector.data(), vector.rows(), 1) {}

  explicit VectorView(const CacheAlignedVector<T>& vector, int pos = 0,
                      int rows = 0)
      : MutableVectorView<const T>(vector.data() + pos,
                                   rows == 0 ? vector.rows() - pos : rows, 1,
                                   vector.rows()) {}

  // Construct from a FatCacheAlignedVector, can optionally specify an offset,
  // and row count.  Views that have fewer columns than the original are not
  // supported.
  explicit VectorView(const FatCacheAlignedVector<T>& vector)
      : MutableVectorView<const T>(vector.data(), vector.rows(),
                                   vector.cols()) {}

  VectorView(const FatCacheAlignedVector<T>& vector, int pos, int rows)
      : MutableVectorView<const T>(vector.data() + pos, rows, vector.cols(),
                                   vector.rows()) {}

  VectorView<T>& operator=(const MutableVectorView<T>& other) {
    this->data_ = other.data();
    this->rows_ = other.rows();
    this->cols_ = other.cols();
    this->col_stride_ = other.col_stride();
    return *this;
  }
};

}  // namespace csrblocksparse
#endif  // LYRA_CODEC_SPARSE_MATMUL_VECTOR_CACHE_ALIGNED_VECTOR_H_