File size: 11,500 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_GENERIC_H_
#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_GENERIC_H_

#include <algorithm>
#include <type_traits>

#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/numerics/type_utils.h"

// Separate out the assembly kernels for readability. Eventually this will
// become an ifdef switch on the architecture type.
#if defined __aarch64__
#include "sparse_matmul/compute/kernels_arm.h"
#elif defined __AVX__
#include "sparse_matmul/compute/kernels_avx.h"
#else   // defined __AVX__
// If there is no architecture-specific implementation, then always use generic.
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMV_4x4 : std::true_type {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMM5_4x4 : std::true_type {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMV_1x1 : std::true_type {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMM5_1x1 : std::true_type {};
template <typename Type>
struct ShouldEnableGenericAdd : std::true_type {};
#endif  // defined __arch64__

namespace csrblocksparse {
namespace detail {

// The computational routines do NO error checking for speed.  It is assumed
// that this has been handled by CSRBlockSparseMatrix.

// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a vector and b is vector. Weights are stored for this
// routine by making each 4x4 block contiguous. Blocks are ordered in standard
// row-major format. column indices are converted to deltas and then multiplied
// by 2 to convert to bytes, so that the value can be used directly to offset
// the pointer into the rhs vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function.  This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
    ShouldEnableGenericSpMV_4x4<WeightType, RhsType, OutType>::value>::type
SpMV_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
         const int32_t* nnz_per_row, const RhsType* rhs_ptr,
         const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
         OutType* out_ptr, int64_t assigned_rows,
         int64_t rows /* only used in SpMM variants */,
         int64_t cols /* only used in SpMM variants */, int relu) {
  for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
    float accumulators[4];
    // Undo the divion by the happens for the assembly version.
    for (int i = 0; i < 4; ++i)
      accumulators[i] = 4.f * static_cast<float>(*bias_ptr++);

    int reduced_col_count = *nnz_per_row++;
    for (int c = 0; c < reduced_col_count; ++c) {
      int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
      rhs_ptr += col_delta;

      // Multiply this 4x4 block.
      for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
          accumulators[i] += static_cast<float>(*weights_ptr++) *
                             static_cast<float>(rhs_ptr[j]);
        }
      }
    }

    for (int i = 0; i < 4; ++i)
      *out_ptr++ = static_cast<OutType>(relu ? std::max(accumulators[i], 0.f)
                                             : accumulators[i]);
  }
}

// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a fat vector with 5 columns and b is vector. b is
// broadcast. Weights are stored for this routine by making each 4x4 block
// contiguous. Blocks are ordered in standard row-major format. column indices
// are converted to deltas and then multiplied by 2 to convert to bytes, so
// that the value can be used directly to offset the pointer into the rhs
// vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function.  This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
    ShouldEnableGenericSpMM5_4x4<WeightType, RhsType, OutType>::value>::type
SpMM5_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
          const int32_t* nnz_per_row, const RhsType* rhs_ptr,
          const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
          OutType* out_ptr, int64_t assigned_rows, int64_t rows, int64_t cols,
          int relu) {
  const RhsType* rhs_ptrs[5];
  for (int i = 0; i < 5; ++i) rhs_ptrs[i] = rhs_ptr + i * cols;

  OutType* out_ptrs[5];
  for (int i = 0; i < 5; ++i) out_ptrs[i] = out_ptr + i * rows;

  for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
    float accumulators[4][5];
    // Undo the divion by the happens for the assembly version.
    for (int i = 0; i < 4; ++i) {
      for (int k = 0; k < 5; ++k) {
        accumulators[i][k] = 4.f * static_cast<float>(*bias_ptr);
      }
      ++bias_ptr;
    }

    int reduced_col_count = *nnz_per_row++;
    for (int c = 0; c < reduced_col_count; ++c) {
      int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
      for (int k = 0; k < 5; ++k) rhs_ptrs[k] += col_delta;

      // multiply this 4x4 block
      for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
          for (int k = 0; k < 5; ++k) {
            accumulators[i][k] += static_cast<float>(*weights_ptr) *
                                  static_cast<float>(rhs_ptrs[k][j]);
          }
          weights_ptr++;
        }
      }
    }

    for (int k = 0; k < 5; ++k) {
      for (int i = 0; i < 4; ++i) {
        out_ptrs[k][0] = static_cast<OutType>(
            relu ? std::max(accumulators[i][k], 0.f) : accumulators[i][k]);
        out_ptrs[k]++;
      }
    }
  }
}

// Performs the calculation y = A * x + b where A is a sparse matrix with
// a 1x1 blocked pattern (ie unstructured), x is a
// vector and b is vector.
// Weights are stored for this routine in standard CSR format.  Each row must
// have a multiple of 8 columns.
// column indices are converted to deltas and then multiplied by 2 to convert
// to bytes, so that the value can be used directly to offset the pointer
// into the rhs vector.
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function.  This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
    ShouldEnableGenericSpMV_1x1<WeightType, RhsType, OutType>::value>::type
SpMV_1x1(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
         const int32_t* nnz_per_row, const RhsType* rhs_ptr,
         const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
         OutType* out_ptr, int64_t assigned_rows,
         int64_t rows /* only used in SpMM variants */,
         int64_t cols /* only used in SpMM variants */, int relu) {
  for (int row = 0; row < assigned_rows; ++row) {
    // Undo the divion by the happens for the assembly version.
    float accumulator = 4.f * static_cast<float>(*bias_ptr++);

    int col_count = *nnz_per_row++;
    for (int c = 0; c < col_count; ++c) {
      int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
      rhs_ptr += col_delta;

      accumulator +=
          static_cast<float>(*weights_ptr++) * static_cast<float>(*rhs_ptr);
    }

    *out_ptr++ =
        static_cast<OutType>(relu ? std::max(accumulator, 0.f) : accumulator);
  }
}

// Performs the calculation y = A * x + b where A is a sparse matrix with
// a 1x1 blocked pattern (ie unstructured), x is a
// vector and b is vector.
// Weights are stored for this routine in standard CSR format.  Each row must
// have a multiple of 8 columns.
// column indices are converted to deltas and then multiplied by 2 to convert
// to bytes, so that the value can be used directly to offset the pointer
// into the rhs vector.
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function.  This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
    ShouldEnableGenericSpMM5_1x1<WeightType, RhsType, OutType>::value>::type
SpMM5_1x1(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
          const int32_t* nnz_per_row, const RhsType* rhs_ptr,
          const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
          OutType* out_ptr, int64_t assigned_rows, int64_t rows, int64_t cols,
          int relu) {
  const RhsType* rhs_ptrs[5];
  for (int i = 0; i < 5; ++i) rhs_ptrs[i] = rhs_ptr + i * cols;

  OutType* out_ptrs[5];
  for (int i = 0; i < 5; ++i) out_ptrs[i] = out_ptr + i * rows;

  for (int row = 0; row < assigned_rows; ++row) {
    // Undo the divion by the happens for the assembly version.
    float accumulator[5];
    for (int i = 0; i < 5; ++i)
      accumulator[i] = 4.f * static_cast<float>(*bias_ptr);

    ++bias_ptr;

    int col_count = *nnz_per_row++;
    for (int c = 0; c < col_count; ++c) {
      int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
      for (int i = 0; i < 5; ++i) {
        rhs_ptrs[i] += col_delta;
        accumulator[i] += static_cast<float>(*weights_ptr) *
                          static_cast<float>(rhs_ptrs[i][0]);
      }
      weights_ptr++;
    }

    for (int i = 0; i < 5; ++i) {
      out_ptrs[i][0] = static_cast<OutType>(relu ? std::max(accumulator[i], 0.f)
                                                 : accumulator[i]);
      out_ptrs[i]++;
    }
  }
}

template <typename Type>
typename std::enable_if<ShouldEnableGenericAdd<Type>::value>::type SumVectors(
    int start, int end, const Type* add1, const Type* add2, Type* result) {
  LOG_FIRST_N(WARNING, 1) << "SumVectors: using generic kernel!";
  for (int i = start; i < end; ++i) {
    Type sum = static_cast<Type>(static_cast<float>(add1[i]) +
                                 static_cast<float>(add2[i]));
    result[i] = sum;
  }
}

}  // namespace detail
}  // namespace csrblocksparse

#undef LABEL_COL_LOOP
#undef LABEL_ROW_LOOP
#undef LABEL_SKIP_COL_LOOP
#undef LABEL_TOP_LOOP

#endif  // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_GENERIC_H_