File size: 17,399 Bytes
a3a53e1 801b22c b61bb2b a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 ebac5f9 a3a53e1 801b22c a3a53e1 d3bd4e5 a3a53e1 f614789 a3a53e1 801b22c a3a53e1 801b22c a3a53e1 801b22c a3a53e1 f614789 a3a53e1 801b22c a3a53e1 801b22c d3bd4e5 801b22c a3a53e1 f614789 a3a53e1 801b22c a3a53e1 801b22c a3a53e1 801b22c a3a53e1 d3bd4e5 a3a53e1 6b86935 07e5bbb 6b86935 07e5bbb a3a53e1 d3bd4e5 a3a53e1 07e5bbb 6b86935 07e5bbb 6b86935 a3a53e1 d3bd4e5 a3a53e1 07e5bbb 6b86935 07e5bbb 6b86935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import pickle
import numpy as np
import streamlit as st
from tensorflow.keras.models import load_model
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
st.set_page_config(layout='wide', initial_sidebar_state="collapsed")
def load_essential_models(scaler_6_path, scaler_8_path, scaler_full_path, clf_6_path, clf_8_path, clf_full_path):
scaler_6 = pickle.load(open(file=scaler_6_path, mode='rb'))
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb'))
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb'))
clf_6 = pickle.load(open(file=clf_6_path, mode='rb'))
clf_8 = load_model(clf_8_path, compile=False)
clf_21 = load_model(clf_full_path, compile=False)
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21
def convert_prediction(prediction):
if prediction == [0]:
return 'S'
elif prediction == [1]:
return 'M'
else:
return 'L'
st.markdown("<h1 style='text-align: center;'>Vietnamese Woman Bra Size Classifier</h1>", unsafe_allow_html=True)
scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 = load_essential_models(scaler_6_path='./Models/6/scaler.pkl', scaler_8_path='./Models/8/scaler.pkl', scaler_full_path='./Models/21/scaler.pkl', clf_6_path='./Models/6/svc_fs_tune.pkl', clf_8_path='./Models/8/ANN_8.h5', clf_full_path='./Models/21/ANNs_full.h5')
header_col_1, header_col_2 = st.columns([3, 2])
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements'])
# h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt = [0.0]*21
if num_of_features == '6 measurements':
sample_options_6 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3 = st.columns([1, 1, 1])
if sample_options_6 == 'Sample 1 (Small)':
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=82.00, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Bust circumference (cm):', value=82.40, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=73.10, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Size difference (cm):', value=9.30, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=325.6, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=325.6, min_value=0.00, step=0.01)
elif sample_options_6 == 'Sample 2 (Medium)':
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=77.20, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Bust circumference (cm):', value=78.60, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=66.50, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Size difference (cm):', value=12.10, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=388.80, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=324.60, min_value=0.00, step=0.01)
else:
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=86.50, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Bust circumference (cm):', value=88.00, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=74.00, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Size difference (cm):', value=14.00, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=451.30, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=471.60, min_value=0.00, step=0.01)
elif num_of_features == '8 measurements':
sample_options_8 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1])
if sample_options_8 == 'Sample 1 (Small)':
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=287.50, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Size difference (cm):', value=7.00, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=8.50, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Bust circumference (cm):', value=74.50, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=74.00, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=8.90, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=8.50, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=67.50, min_value=0.00, step=0.01)
elif sample_options_8 == 'Sample 2 (Medium)':
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=489.60, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Size difference (cm):', value=13.00, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=12.40, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Bust circumference (cm):', value=78.30, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=77.20, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=11.60, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=8.70, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=65.30, min_value=0.00, step=0.01)
else:
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=568.2, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Size difference (cm):', value=13.7, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=14.0, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Bust circumference (cm):', value=88.7, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=86.5, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=12.5, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=10.7, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=75.0, min_value=0.00, step=0.01)
else:
sample_options_21 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1])
if sample_options_21 == 'Sample 1 (Small)':
h = container_col_1.number_input(label='Height (cm):', value=158.50, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Weight (kg):', value=44.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=17.50, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=75.40, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Bust circumference (cm):', value=81.10, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=74.80, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=14.50, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.80, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=14.40, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=8.60, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=8.40, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=21.50, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=21.20, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.90, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=6.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=6.50, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=21.80, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=21.10, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Size difference (cm):', value=6.30, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=325.10, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=335.70, min_value=0.00, step=0.01)
elif sample_options_21 == 'Sample 2 (Medium)':
h = container_col_1.number_input(label='Height (cm):', value=163.00, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Weight (kg):', value=43.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=16.20, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=76.00, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Bust circumference (cm):', value=79.00, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=64.00, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=16.50, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.10, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=12.60, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=9.20, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=9.10, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=19.80, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=18.20, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.40, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=3.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=3.70, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=21.00, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=20.50, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Size difference (cm):', value=15.00, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=521.60, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=513.50, min_value=0.00, step=0.01)
else:
h = container_col_1.number_input(label='Height (cm):', value=152.00, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Weight (kg):', value=46.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=19.90, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=77.50, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Bust circumference (cm):', value=85.50, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=70.40, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=18.90, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.50, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=12.50, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=10.30, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=10.50, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=20.40, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=20.10, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.50, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=5.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=4.20, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=19.50, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=20.50, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Size difference (cm):', value=15.10, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=625.80, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=585.40, min_value=0.00, step=0.01)
col_1, col_2, col_3, col_4, col_5 = st.columns([1, 1, 1, 1, 1])
with col_3:
predict = st.button(label='Predict', use_container_width=True)
if predict:
if num_of_features == '6 measurements':
X_6 = np.array([[vtn, vn, vcn, cl, ttp, ttt]])
X_6 = scaler_6.transform(X_6)
y_6 = clf_6.predict(X_6)
y_pred_6 = convert_prediction(y_6)
# st.success(f'We recommend you choosing **{convert_prediction(y_6)}** size!')
styled_text = f"<h3 style='text-align: center;'>We recommend you choosing <span style='color: red; font-weight: bold;'>{y_pred_6}</span> size!</h3>"
st.markdown(styled_text, unsafe_allow_html=True)
elif num_of_features == '8 measurements':
X_8 = np.array([[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]])
X_8 = scaler_8.transform(X_8)
y_8 = clf_8.predict(X_8)
# st.success(f'We recommend you choosing **{convert_prediction(np.argmax(y_8, axis=1))}** size!')
y_pred_8 = convert_prediction(y_8)
# st.success(f'We recommend you choosing **{convert_prediction(y_6)}** size!')
styled_text = f"<h3 style='text-align: center;'>We recommend you choosing <span style='color: red; font-weight: bold;'>{y_pred_8}</span> size!</h3>"
else:
X_21 = np.array([[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]])
X_21 = scaler_21.transform(X_21)
y_21 = clf_21.predict(X_21)
# st.success(f'We recommend you choosing **{convert_prediction(np.argmax(y_21, axis=1))}** size!')
y_pred_21 = convert_prediction(y_21)
# st.success(f'We recommend you choosing **{convert_prediction(y_6)}** size!')
styled_text = f"<h3 style='text-align: center;'>We recommend you choosing <span style='color: red; font-weight: bold;'>{y_pred_21}</span> size!</h3>" |