Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,074 Bytes
549a2cc 5c8a315 b10dbaa 549a2cc 5c8a315 b10dbaa 5c8a315 927c3de 549a2cc 5c8a315 b7d0cb0 5c8a315 b7d0cb0 b10dbaa 5c8a315 01defef b10dbaa 01defef 1df563c b10dbaa 5c8a315 b10dbaa b7d0cb0 5c8a315 a472331 01defef 5c8a315 99b0a9f 5c8a315 b7d0cb0 d2eac8a b7d0cb0 d2eac8a 5c8a315 eb8b030 b7d0cb0 d2eac8a 5c8a315 99b0a9f 5c8a315 99b0a9f 5c8a315 99b0a9f 5c8a315 c72f674 5c8a315 927c3de 5c8a315 366b82f 5c8a315 99b0a9f 5c8a315 b7d0cb0 c72f674 b7d0cb0 99b0a9f 5c8a315 5fe0186 5c8a315 5fe0186 5c8a315 5fe0186 b38a158 5fe0186 b7d0cb0 5fe0186 b7d0cb0 5fe0186 5c8a315 5fe0186 5c8a315 fb2dec7 b38a158 99b0a9f b38a158 0b486c6 eb8b030 5c8a315 a6c3087 5c8a315 a6c3087 5c8a315 b673702 5c8a315 9ff2d70 391f5e7 9ff2d70 d2eac8a 391f5e7 5c8a315 99b0a9f 5c8a315 8a8cff3 5f1dd3f b7d0cb0 a472331 8a8cff3 5c8a315 8a8cff3 5f1dd3f 8a8cff3 5c8a315 927c3de 18e86d5 927c3de b10dbaa 5c8a315 4d03435 5c8a315 391cfe9 886bf76 b7d0cb0 4d03435 b7d0cb0 6d4d03f 99b0a9f 4482a4e 5c8a315 99b0a9f ebc2ece 99b0a9f f9eef39 b673702 391f5e7 b673702 391f5e7 b673702 391f5e7 b10dbaa 5fe0186 b673702 5fe0186 b7d0cb0 5fe0186 b38a158 5fe0186 b673702 5fe0186 b7d0cb0 5fe0186 b38a158 5fe0186 b673702 549a2cc b673702 5c8a315 01defef 49d14ca 3b1c44f 49d14ca 5c8a315 49d14ca b10dbaa 5c8a315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
CREDITS_TEXT,
HEADERS_MAPPING,
ICON_MAPPING,
INTRO_TEXT_AR,
INTRO_TEXT_EN,
INTRO_TEXT_FR,
LOGO,
REVIEW_TEXT,
SLOGAN,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet, is_request_in_list, marker_request
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou نتعاونو",
)
# Initialize States
if "sleep_time" not in st.session_state:
st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
st.session_state.auto_refresh = False
auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
number = st.sidebar.number_input(
"Refresh rate in seconds", value=st.session_state.sleep_time
)
st.session_state.sleep_time = number
# Streamlit functions
def display_interventions(interventions_df):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if pd.isna(village_status):
village_status = "Partiellement satisfait / Partially Served"
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]]
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
))
def show_requests(filtered_df):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
displayed_request = marker_request(request_type) # TODO: the marker should depend on selected_options
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
# we display all requests in popup text and use the first one for the icon/color
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
icon_name = ICON_MAPPING.get(request_type, "list")
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(displayed_request, "blue"), icon=icon_name, prefix="glyphicon"
),
))
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
if for_help_requests:
st.markdown(
"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at nt3awnoumorocco@gmail.com",
)
st.markdown(
"""
<div style="text-align: left;">
<a href="mailto:nt3awnoumorocco@gmail.com">nt3awnoumorocco@gmail.com</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
</div>
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
# collapse the text
with st.expander("🔍 Review of requests | مراجعة طلب مساعدة"):
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# Logo and Title
st.markdown(LOGO, unsafe_allow_html=True)
# st.title("Nt3awnou نتعاونو")
st.markdown(SLOGAN, unsafe_allow_html=True)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
len_requests = len(df)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column="Automatic Extracted Coordinates")
len_interventions = len(interventions_df)
m = init_map()
fg = folium.FeatureGroup(name="Markers")
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
st.markdown(
"👉 **Choose request type | Choissisez le type de demande | اختر نوع الطلب**"
)
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]
for i, option in enumerate(options):
checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
if checked:
selected_options.append(option)
df["id"] = df.index
# keep rows with at least one request in selected_options
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].apply(
lambda x: is_request_in_list(x, selected_options, options)
)]
# Selection of interventions
show_interventions = st.checkbox(
"Display Interventions | Afficher les interventions | عرض عمليات المساعدة",
value=True,
)
# Categories of villages
st.markdown(
"👉 **State of villages visited by NGOs| Etat de villages visités par les ONGs | وضعية القرى التي زارتها الجمعيات**",
unsafe_allow_html=True,
)
# use checkboxes
col_1, col_2, col_3 = st.columns([1, 1, 1])
critical_villages = col_1.checkbox(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة",
value=True,
)
partially_satisfied_villages = col_2.checkbox(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات",
value=True,
)
fully_satisfied_villages = col_3.checkbox(
"✅ Fully served / تمت المساعدة بشكل كامل",
value=True,
)
selected_village_types = []
if critical_villages:
selected_village_types.append(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة"
)
if partially_satisfied_villages:
selected_village_types.append(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات"
)
if fully_satisfied_villages:
selected_village_types.append("✅ Fully served / تمت المساعدة بشكل كامل")
status_mapping = {
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة": "Critique, Besoin d'aide en urgence / Critical, in urgent need of help",
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات": "Partiellement satisfait / Partially Served",
"✅ Fully served / تمت المساعدة بشكل كامل": "Entièrement satisfait / Fully served",
}
selected_statuses = [status_mapping[status] for status in selected_village_types]
if show_interventions:
display_interventions(interventions_df)
# Show requests
show_requests(filtered_df)
st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")
# Embed code
with st.expander("📝 Embed code | Code à intégrer | كود للتضمين"):
st.code(
"""
<iframe id="nt3awnou-map"
src="https://nt3awnou-embed-rescue-map.hf.space/?embed=true" width="1200" height="720"
frameborder="0"
width="850"
height="450"
title="Nt3awno Rescue Map">
</iframe>
<script src="https://cdn.jsdelivr.net/npm/iframe-resizer@4.3.4/js/iframeResizer.min.js"></script>
<script>
iFrameResize({}, "#nt3awnou-map");
</script>
""",
language="html",
)
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
with tab_en:
st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown(
f"""
<div style="text-align: center;">
<h3>Number of help requests</h3>
<h2>{len_requests}</h2>
</div>
""",
unsafe_allow_html=True,
)
with col2:
st.markdown(
f"""
<div style="text-align: center;">
<h3>Number of interventions</h3>
<h2>{len_interventions}</h2>
</div>
""",
unsafe_allow_html=True,
)
with tab_ar:
st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown(
f"""
<div style="text-align: center;">
<h3>عدد طلبات المساعدة</h3>
<h2>{len_requests}</h2>
</div>
""",
unsafe_allow_html=True,
)
with col2:
st.markdown(
f"""
<div style="text-align: center;">
<h3>عدد التدخلات</h3>
<h2>{len_interventions}</h2>
</div>
""",
unsafe_allow_html=True,
)
with tab_fr:
st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown(
f"""
<div style="text-align: center;">
<h3>Nombre de demandes d'aide</h3>
<h2>{len_requests}</h2>
</div>
""",
unsafe_allow_html=True,
)
with col2:
st.markdown(
f"""
<div style="text-align: center;">
<h3>Nombre d'interventions</h3>
<h2>{len_interventions}</h2>
</div>
""",
unsafe_allow_html=True,
)
# Requests table
st.divider()
st.subheader("📝 **Table of requests / جدول الطلبات**")
drop_cols = [
"(عند الامكان) رقم هاتف شخص موجود في عين المكان",
"الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
"GeoStamp",
"GeoCode",
"GeoAddress",
"Status",
"id",
]
display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True, for_help_requests=True)
# Interventions table
st.divider()
st.subheader("📝 **Table of interventions / جدول التدخلات**")
display_dataframe(
interventions_df,
[], # We show NGOs contact information
INTERVENTIONS_URL,
search_id=False,
status=True,
for_help_requests=False,
)
# Submit an id for review
st.divider()
id_review_submission()
# Donations can be made to the gouvernmental fund under the name
st.divider()
st.subheader("📝 **Donations / التبرعات / Dons**")
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
with tab_en:
st.markdown(
"""
<div style="text-align: center;">
<h4>The official bank account dedicated to tackle the consequences of the earthquake is:</h4>
<b>Account number:</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>For the money transfers coming from outside Morocco</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
""",
unsafe_allow_html=True,
)
with tab_ar:
st.markdown(
"""
<div style="text-align: center;">
<h4>الحساب البنكي الرسمي المخصص لمواجهة عواقب الزلزال</h4>
<b>رقم الحساب</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>للتحويلات القادمة من خارج المغرب</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
</div>
""",
unsafe_allow_html=True,
)
with tab_fr:
st.markdown(
"""
<div style="text-align: center;">
<h4>Le compte bancaire officiel dédié à la lutte contre les conséquences du séisme est le suivant:</h4>
<b>Numéro de compte:</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>Pour les transferts d'argent en provenance de l'étranger</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
""",
unsafe_allow_html=True,
)
# Credits
st.markdown(
CREDITS_TEXT,
unsafe_allow_html=True,
)
if auto_refresh:
time.sleep(number)
st.experimental_rerun()
|