File size: 10,648 Bytes
bfc0ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""Utilities for working with datasets."""

import gc
import json
import math
import os
import pprint
import secrets
from collections.abc import Iterable
from typing import Any, Callable, Iterator, Optional, Sequence, TypeVar, Union, cast

import numpy as np
import pyarrow as pa

from ..batch_utils import deep_flatten
from ..embeddings.vector_store import VectorDBIndex
from ..env import env
from ..parquet_writer import ParquetWriter
from ..schema import (
  EMBEDDING_KEY,
  PATH_WILDCARD,
  ROWID,
  TEXT_SPAN_END_FEATURE,
  TEXT_SPAN_START_FEATURE,
  VALUE_KEY,
  DataType,
  Field,
  Item,
  PathKey,
  PathTuple,
  Schema,
  VectorKey,
  field,
  schema,
  schema_to_arrow_schema,
)
from ..signal import Signal
from ..utils import is_primitive, log, open_file


def _replace_embeddings_with_none(input: Union[Item, Item]) -> Union[Item, Item]:
  if isinstance(input, np.ndarray):
    return None
  if isinstance(input, dict):
    return {k: _replace_embeddings_with_none(v) for k, v in input.items()}
  if isinstance(input, list):
    return [_replace_embeddings_with_none(v) for v in input]

  return input


def replace_embeddings_with_none(input: Union[Item, Item]) -> Item:
  """Replaces all embeddings with None."""
  return cast(Item, _replace_embeddings_with_none(input))


def count_primitives(input: Union[Iterable, Iterator]) -> int:
  """Iterate through each element of the input, flattening each one, computing a count.

  Sum the final set of counts. This is the important iterable not to exhaust.
  """
  return sum((len(list(deep_flatten(i))) for i in input))


def _wrap_value_in_dict(input: Union[object, dict], props: PathTuple) -> Union[object, dict]:
  # If the signal produced no value, or nan, we should return None so the parquet value is sparse.
  if isinstance(input, float) and math.isnan(input):
    input = None
  for prop in reversed(props):
    input = {prop: input}
  return input


def _wrap_in_dicts(input: Union[object, Iterable[object]],
                   spec: list[PathTuple]) -> Union[object, Iterable[object]]:
  """Wraps an object or iterable in a dict according to the spec."""
  props = spec[0] if spec else tuple()
  if len(spec) == 1:
    return _wrap_value_in_dict(input, props)
  if input is None or isinstance(input, float) and math.isnan(input):
    # Return empty dict for missing inputs.
    return {}
  res = [_wrap_in_dicts(elem, spec[1:]) for elem in cast(Iterable, input)]
  return _wrap_value_in_dict(res, props)


def wrap_in_dicts(input: Iterable[object], spec: list[PathTuple]) -> Iterable[object]:
  """Wraps an object or iterable in a dict according to the spec."""
  return [_wrap_in_dicts(elem, spec) for elem in input]


def _merge_field_into(schema: Field, destination: Field) -> None:
  if isinstance(schema, Field):
    destination.signal = destination.signal or schema.signal
    destination.dtype = destination.dtype or schema.dtype
  if schema.fields:
    destination.fields = destination.fields or {}
    for field_name, subfield in schema.fields.items():
      if field_name not in destination.fields:
        destination.fields[field_name] = subfield.copy(deep=True)
      else:
        _merge_field_into(subfield, destination.fields[field_name])
  elif schema.repeated_field:
    if not destination.repeated_field:
      raise ValueError('Failed to merge schemas. Origin schema is repeated, but destination is not')
    _merge_field_into(schema.repeated_field, destination.repeated_field)
  else:
    if destination.dtype != schema.dtype:
      raise ValueError(f'Failed to merge schemas. Origin schema has dtype {schema.dtype}, '
                       f'but destination has dtype {destination.dtype}')


def merge_schemas(schemas: Sequence[Union[Schema, Field]]) -> Schema:
  """Merge a list of schemas."""
  merged_schema = Schema(fields={})
  for s in schemas:
    _merge_field_into(cast(Field, s), cast(Field, merged_schema))
  return merged_schema


def schema_contains_path(schema: Schema, path: PathTuple) -> bool:
  """Check if a schema contains a path."""
  current_field = cast(Field, schema)
  for path_part in path:
    if path_part == PATH_WILDCARD:
      if current_field.repeated_field is None:
        return False
      current_field = current_field.repeated_field
    else:
      if current_field.fields is None or path_part not in current_field.fields:
        return False
      current_field = current_field.fields[str(path_part)]
  return True


def create_signal_schema(signal: Signal, source_path: PathTuple, current_schema: Schema) -> Schema:
  """Create a schema describing the enriched fields added an enrichment."""
  leafs = current_schema.leafs
  # Validate that the enrich fields are actually a valid leaf path.
  if source_path not in leafs:
    raise ValueError(f'"{source_path}" is not a valid leaf path. Leaf paths: {leafs.keys()}')

  signal_schema = signal.fields()
  signal_schema.signal = signal.dict()

  enriched_schema = field(fields={signal.key(is_computed_signal=True): signal_schema})

  for path_part in reversed(source_path):
    if path_part == PATH_WILDCARD:
      enriched_schema = Field(repeated_field=enriched_schema)
    else:
      enriched_schema = Field(fields={path_part: enriched_schema})

  if not enriched_schema.fields:
    raise ValueError('This should not happen since enriched_schema always has fields (see above)')

  return schema(enriched_schema.fields.copy())


def write_embeddings_to_disk(vector_store: str, rowids: Iterable[str], signal_items: Iterable[Item],
                             output_dir: str) -> None:
  """Write a set of embeddings to disk."""

  def embedding_predicate(input: Any) -> bool:
    return (isinstance(input, list) and len(input) > 0 and isinstance(input[0], dict) and
            EMBEDDING_KEY in input[0])

  path_keys = flatten_keys(rowids, signal_items, is_primitive_predicate=embedding_predicate)
  all_embeddings = cast(Iterable[Item],
                        deep_flatten(signal_items, is_primitive_predicate=embedding_predicate))

  embedding_vectors: list[np.ndarray] = []
  all_spans: list[tuple[PathKey, list[tuple[int, int]]]] = []
  for path_key, embeddings in zip(path_keys, all_embeddings):
    if not path_key or not embeddings:
      # Sparse embeddings may not have an embedding for every key.
      continue

    spans: list[tuple[int, int]] = []
    for e in embeddings:
      span = e[VALUE_KEY]
      vector = e[EMBEDDING_KEY]
      # We squeeze here because embedding functions can return outer dimensions of 1.
      embedding_vectors.append(vector.reshape(-1))
      spans.append((span[TEXT_SPAN_START_FEATURE], span[TEXT_SPAN_END_FEATURE]))
    all_spans.append((path_key, spans))
  embedding_matrix = np.array(embedding_vectors, dtype=np.float32)
  del path_keys, all_embeddings, embedding_vectors
  gc.collect()

  # Write to disk.
  vector_index = VectorDBIndex(vector_store)
  vector_index.add(all_spans, embedding_matrix)
  vector_index.save(output_dir)

  del vector_index
  gc.collect()


def write_items_to_parquet(items: Iterable[Item], output_dir: str, schema: Schema,
                           filename_prefix: str, shard_index: int,
                           num_shards: int) -> tuple[str, int]:
  """Write a set of items to a parquet file, in columnar format."""
  schema = schema.copy(deep=True)
  # Add a rowid column.
  schema.fields[ROWID] = Field(dtype=DataType.STRING)

  arrow_schema = schema_to_arrow_schema(schema)
  out_filename = parquet_filename(filename_prefix, shard_index, num_shards)
  filepath = os.path.join(output_dir, out_filename)
  f = open_file(filepath, mode='wb')
  writer = ParquetWriter(schema)
  writer.open(f)
  debug = env('DEBUG', False)
  num_items = 0
  for item in items:
    # Add a rowid column.
    if ROWID not in item:
      item[ROWID] = secrets.token_urlsafe(nbytes=12)  # 16 base64 characters.
    if debug:
      try:
        _validate(item, arrow_schema)
      except Exception as e:
        raise ValueError(f'Error validating item: {json.dumps(item)}') from e
    writer.write(item)
    num_items += 1
  writer.close()
  f.close()
  return out_filename, num_items


def _validate(item: Item, schema: pa.Schema) -> None:
  # Try to parse the item using the inferred schema.
  try:
    pa.RecordBatch.from_pylist([item], schema=schema)
  except pa.ArrowTypeError:
    log('Failed to parse arrow item using the arrow schema.')
    log('Item:')
    log(pprint.pformat(item, indent=2))
    log('Arrow schema:')
    log(schema)
    raise  # Re-raise the same exception, same stacktrace.


def parquet_filename(prefix: str, shard_index: int, num_shards: int) -> str:
  """Return the filename for a parquet file."""
  return f'{prefix}-{shard_index:05d}-of-{num_shards:05d}.parquet'


def _flatten_keys(rowid: str, nested_input: Iterable, location: list[int],
                  is_primitive_predicate: Callable[[object], bool]) -> Iterator[VectorKey]:
  if is_primitive_predicate(nested_input) or is_primitive(nested_input) or isinstance(
      nested_input, dict):
    yield (rowid, *location)
    return

  for i, input in enumerate(nested_input):
    yield from _flatten_keys(rowid, input, [*location, i], is_primitive_predicate)


def flatten_keys(
    rowids: Iterable[str],
    nested_input: Iterable,
    is_primitive_predicate: Callable[[object],
                                     bool] = is_primitive) -> Iterator[Optional[VectorKey]]:
  """Flatten the rowids of a nested input."""
  for rowid, input in zip(rowids, nested_input):
    if input is None:
      yield None
      continue
    yield from _flatten_keys(rowid, input, [], is_primitive_predicate)


Tin = TypeVar('Tin')
Tout = TypeVar('Tout')


def sparse_to_dense_compute(
    sparse_input: Iterator[Optional[Tin]],
    func: Callable[[Iterable[Tin]], Iterable[Tout]]) -> Iterator[Optional[Tout]]:
  """Densifies the input before calling the provided `func` and sparsifies the output."""
  locations: list[int] = []
  total_size: int = 0

  def densify(x: Iterator[Optional[Tin]]) -> Iterator[Tin]:
    nonlocal locations, total_size
    for i, value in enumerate(x):
      total_size += 1
      if value is not None:
        locations.append(i)
        yield value

  dense_input = densify(sparse_input)
  dense_output = iter(func(dense_input))
  index = 0

  location_index = 0

  while True:
    try:
      out = next(dense_output)
      out_index = locations[location_index]
      while index < out_index:
        yield None
        index += 1
      yield out
      location_index += 1
      index += 1
    except StopIteration:
      while index < total_size:
        yield None
        index += 1
      return