File size: 7,810 Bytes
6fd5d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6d883
6fd5d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324e70f
6fd5d66
 
fd1b2e4
6fd5d66
 
 
 
 
 
 
 
 
 
b8ed4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd5d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324e70f
eb66ada
 
 
 
 
 
 
 
 
 
 
 
 
 
324e70f
6fd5d66
 
 
b8ed4b6
6fd5d66
1023ca3
6fd5d66
 
 
 
 
 
 
 
 
 
 
 
1821102
6fd5d66
 
c62dee7
4e34acf
b8ed4b6
6fd5d66
c62dee7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import spaces
import gradio as gr
import os
import random
import json
import uuid
from huggingface_hub import snapshot_download
from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import torch
from typing import Tuple
from datetime import datetime
import requests
import torch
from diffusers import DiffusionPipeline
import importlib

MAX_SEED = 12211231
CACHE_EXAMPLES = "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

NUM_IMAGES_PER_PROMPT = 1


cfg = json.load(open("app.conf"))

def load_pipeline_and_scheduler():
    clip_skip = cfg.get("clip_skip", 0)

    # Download the model files
    ckpt_dir = snapshot_download(repo_id=cfg["model_id"])

    # Load the models
    vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)
   
    pipe = StableDiffusionXLPipeline.from_pretrained(
        ckpt_dir,
        vae=vae,
        torch_dtype=torch.float16,
        use_safetensors=True,
        variant="fp16"
    )
    pipe = pipe.to("cuda")
    
    pipe.unet.set_attn_processor(AttnProcessor2_0())

    # Define samplers
    samplers = {
        "Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
        "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
    }
    # Set the scheduler based on the selected sampler
    pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")]
    
    # Set clip skip
    pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")
    return pipe
pipe = load_pipeline_and_scheduler()
css = '''
.gradio-container{max-width: 560px !important}
body {
    background-color: rgb(3, 7, 18);
    color: white;
}
.gradio-container {
    background-color: rgb(3, 7, 18) !important;
    border: none !important;
}
footer {display: none !important;}
''' 
js = '''
<script src="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/prompt.js"></script>
<script>
window.g=function(){ 
  const conditions = {
    "tag": ["normal", "sexy", "porn"],
    "exclude_category": ["Clothing"],
    "count_per_tag": 1
  };
  prompt = generateSexyPrompt()
  console.log(prompt);
  return prompt
}
function checkDomain(img, str) {
  // Get the current page's hostname (domain)
  const currentDomain = window.location.hostname;
  
  // Convert both the domain and the input string to lowercase for case-insensitive comparison
  const lowerDomain = currentDomain.toLowerCase();
  const lowerStr = str.toLowerCase();
  
  // Check if the domain contains the string
  if lowerDomain.includes(lowerStr){
      return null;
  }
  return img;
}
window.postMessageToParent = function(prompt, event, source, value) {
    // Construct the message object with the provided parameters
    console.log("post start",event, source, value);
    const message = {
        event: event,
        source: source,
        value: value
    };
    
    // Post the message to the parent window
    window.parent.postMessage(message, '*');
    console.log("post finish");
    return prompt;
}
function uploadImage(prompt, images, event, source, value) {
    // Ensure we're in an iframe
    console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value);
    if (window.self !== window.top) {
        // Get the first image from the gallery (assuming it's an array)
        let imageUrl = images && images.length > 0 ? images[0].image.url : null;
        
        // Prepare the data to send
        let data = {
            event: event,
            source: source,
            prompt: prompt,
            image: imageUrl
        };
        
        // Post the message to the parent window
        window.parent.postMessage(JSON.stringify(data), '*');
    } else {
        console.log("Not in an iframe, can't post to parent");
    }
}
</script>
'''
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name
    
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=60)
def generate(prompt, progress=gr.Progress(track_tqdm=True)):
    negative_prompt = cfg.get("negative_prompt", "")
    style_selection = ""
    use_negative_prompt = True
    seed = 0
    width = cfg.get("width", 1024)
    height = cfg.get("width", 768) 
    inference_steps = cfg.get("inference_steps", 30)
    randomize_seed = True
    guidance_scale = cfg.get("guidance_scale", 7.5)
    prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", prompt)
      
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(pipe.device).manual_seed(seed)
        
    images = pipe(
        prompt=prompt_str,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="pil",
    ).images
    
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths


default_image = cfg.get("cover_path", None)

if default_image:
    if isinstance(default_image, list):
        # Filter out non-existent paths
        existing_images = [img for img in default_image if os.path.exists(img)]
        if existing_images:
            default_image = random.choice(existing_images)
        else:
            default_image = None
    elif not os.path.exists(default_image):
        default_image = None
else:
    default_image = None

with gr.Blocks(css=css,head=js,fill_height=True) as demo:
    with gr.Row(equal_height=False):
        with gr.Group():                
            result = gr.Gallery(
              label="Result",  show_label=False, columns=1, rows=1, show_share_button=True,
              show_download_button=True,allow_preview=True,interactive=False, min_width=cfg.get("window_min_width", 340),height=360
            )
            with gr.Row(): 
                prompt = gr.Text(
                    show_label=False,
                    max_lines=2,
                    lines=2,
                    placeholder="Enter what you want to see",
                    container=False,
                    scale=5,
                    min_width=100,
                )
                random_button = gr.Button("Surprise Me", scale=1, min_width=10)
            run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg")

    random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''()=>window.g()''')
    run_button.click(generate, inputs=[prompt], outputs=[result], js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''')
    result.change(fn=lambda x:x, inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "finish")''')
    demo.load(fn=lambda x:x, inputs=[default_image], outputs=[result], js='''(img)=>checkDomain(img, "huggingface")''')
if __name__ == "__main__":
    demo.queue().launch(show_api=False)