File size: 12,830 Bytes
6fd5d66 39455df 6fd5d66 ad47e83 6fd5d66 7bd45d4 6fd5d66 39455df 6fd5d66 ae6d883 6fd5d66 aa186ef 6fd5d66 fd1b2e4 6fd5d66 b37e825 e665218 b37e825 1a72e70 01406a3 1a72e70 803f692 573a506 1a72e70 b37e825 6fd5d66 b8ed4b6 b37e825 6fd5d66 1a72e70 c08a54f 1a72e70 c1469e0 8b6e01d e04371c c1469e0 6fd5d66 c1469e0 6fd5d66 c1469e0 6fd5d66 c1469e0 6fd5d66 c1469e0 8b6e01d e04371c 6fd5d66 065e315 6fd5d66 b37e825 53c115a 1a72e70 fb68648 e384aad b37e825 6fd5d66 5f37bc6 fb68648 3788f6b fb68648 6fd5d66 7c4ee69 6fd5d66 887d072 1708f53 c08a54f 1708f53 c08a54f 1708f53 a455f3b e88ee3c c08a54f e88ee3c c08a54f d37c7ab e384aad 7bd45d4 ff4ece2 1708f53 aee742b a455f3b 71001b6 ff4ece2 1708f53 a455f3b 1708f53 a455f3b e88ee3c 1812813 803f692 1708f53 6fd5d66 fe58994 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import spaces
import gradio as gr
import os
import random
import json
import time
import uuid
from PIL import Image
from huggingface_hub import snapshot_download
from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import torch
from typing import Tuple
from datetime import datetime
import requests
import torch
from diffusers import DiffusionPipeline
import importlib
from urllib.parse import urlparse
random.seed(time.time())
MAX_SEED = 12211231
CACHE_EXAMPLES = "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
NUM_IMAGES_PER_PROMPT = 1
cfg = json.load(open("app.conf"))
def load_pipeline_and_scheduler():
clip_skip = cfg.get("clip_skip", 0)
# Download the model files
ckpt_dir = snapshot_download(repo_id=cfg["model_id"])
# Load the models
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe = pipe.to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
# Define samplers
samplers = {
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
}
# Set the scheduler based on the selected sampler
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")]
# Set clip skip
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
return pipe
pipe = load_pipeline_and_scheduler()
css = '''
.gradio-container{max-width: 560px !important}
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
.gradio-container footer {
display: none !important;
}
'''
js = '''
<script src="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/prompt.js"></script>
<script>
function getEnvInfo() {
const result = {};
// Get URL parameters
const urlParams = new URLSearchParams(window.location.search);
for (const [key, value] of urlParams) {
result[key] = value;
}
// Get current domain and convert to lowercase
result["__domain"] = window.location.hostname.toLowerCase();
// Get iframe parent domain, if any, and convert to lowercase
try {
if (window.self !== window.top) {
result["__iframe_domain"] = document.referrer
? new URL(document.referrer).hostname.toLowerCase()
: "unable to get iframe parent domain";
}else{
result["__iframe_domain"] = "";
}
} catch (e) {
result["__iframe_domain"] = "unable to access iframe parent domain";
}
return result;
}
function isValidEnv(){
envInfo = getEnvInfo();
return envInfo["e"] == "1" ||
envInfo["__domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__iframe_domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__domain"].indexOf("127.0.0.1") != -1 ||
envInfo["__iframe_domain"].indexOf("127.0.0.1") != -1;
}
window.g=function(p){
params = getEnvInfo();
if (!isValidEnv()){
return "";
}
const conditions = {
"tag": ["normal", "sexy", "porn"],
"exclude_category": ["Clothing"],
"count_per_tag": 1
};
prompt = generateSexyPrompt()
console.log(prompt);
return prompt
}
window.postMessageToParent = function(prompt, event, source, value) {
// Construct the message object with the provided parameters
console.log("post start",event, source, value);
const message = {
event: event,
source: source,
value: value
};
if (!prompt){
prompt = window.g();
// Find the prompt input element
const promptContainer = document.getElementById('prompt_input_box');
if (promptContainer) {
const promptInput = promptContainer.querySelector('input') || promptContainer.querySelector('textarea');
if (promptInput) {
promptInput.value = prompt;
// Trigger an input event to ensure Gradio recognizes the change
promptInput.dispatchEvent(new Event('input', { bubbles: true }));
}
}
}
if (window.self !== window.top) {
// Post the message to the parent window
window.parent.postMessage(message, '*');
}else if(isValidEnv()){
try{
sendCustomEventToDataLayer({},event,source,value)
} catch (error) {
console.error("Error in sendCustomEventToDataLayer:", error);
}
}else{
console.log("Not in an iframe, can't post to parent");
}
console.log("post finish");
return prompt;
}
function uploadImage(prompt, images, event, source, value) {
// Ensure we're in an iframe
console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value);
// Get the first image from the gallery (assuming it's an array)
let imageUrl = images && images.length > 0 ? images[0].image.url : null;
if (window.self !== window.top) {
// Post the message to the parent window
// Prepare the data to send
let data = {
event: event,
source: source,
value:{
prompt: prompt,
image: imageUrl
}
};
window.parent.postMessage(JSON.stringify(data), '*');
} else if (isValidEnv()){
try{
sendCustomEventToDataLayer({},event,source,{"prompt": prompt, "image":imageUrl})
} catch (error) {
console.error("Error in sendCustomEventToDataLayer:", error);
}
}else{
console.log("Not in an iframe, can't post to parent");
}
return prompt, images
}
function onDemoLoad(){
let envInfo = getEnvInfo();
console.log(envInfo);
if (isValidEnv()){
var element = document.getElementById("desc_html_code");
if (element) {
element.parentNode.removeChild(element);
}
}
return;
//return envInfo["__domain"], envInfo["__iframe_domain"]
}
</script>
'''
desc_html='''
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; text-align: center; margin-top: 20px;">
<p style="font-size: 16px; color: #333;">
For the full version and more exciting NSFW AI apps, visit
<a href="https://nsfwais.io?utm_source=hf_'''+cfg["model_id"].replace("/","_")+'''&utm_medium=referral" style="color: #0066cc; text-decoration: none; font-weight: bold;" rel="dofollow">nsfwais.io</a>!
</p>
</div>
'''
def save_image(img):
# Generate a unique filename
unique_name = str(uuid.uuid4()) + ".webp"
# Convert the image to WebP format
webp_img = img.convert("RGB") # Ensure the image is in RGB mode
# Save the image in WebP format with high quality
webp_img.save(unique_name, "WEBP", quality=90)
# Open the saved WebP file and return it as a PIL Image object
with Image.open(unique_name) as webp_file:
webp_image = webp_file.copy()
return webp_image, unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60)
def generate(p, progress=gr.Progress(track_tqdm=True)):
negative_prompt = cfg.get("negative_prompt", "")
style_selection = ""
use_negative_prompt = True
seed = 0
width = cfg.get("width", 1024)
height = cfg.get("width", 768)
inference_steps = cfg.get("inference_steps", 30)
randomize_seed = True
guidance_scale = cfg.get("guidance_scale", 7.5)
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(pipe.device).manual_seed(seed)
images = pipe(
prompt=prompt_str,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
images = [save_image(img) for img in images]
image_paths = [i[1] for i in images]
print(prompt_str, image_paths)
return [i[0] for i in images]
default_image = cfg.get("cover_path", None)
if default_image:
if isinstance(default_image, list):
# Filter out non-existent paths
existing_images = [img for img in default_image if os.path.exists(img)]
#print(f"found cover files: {existing_images}")
if existing_images:
default_image = existing_images[int(time.time()*1000)%len(existing_images)]
else:
default_image = None
elif not os.path.exists(default_image):
print(f"cover file not existed, {default_image}")
default_image = None
else:
default_image = None
with gr.Blocks(css=css,head=js,fill_height=True) as demo:
with gr.Row(equal_height=False):
with gr.Group():
gr.HTML(value=desc_html, elem_id='desc_html_code')
result = gr.Gallery(value=default_image,
label="Result", show_label=False, columns=1, rows=1, show_share_button=True,elem_id=cfg["model_id"].replace("/", "-"),
show_download_button=True,allow_preview=False,interactive=False, min_width=cfg.get("window_min_width", 340),height=360
)
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=2,
lines=2,
placeholder="Enter your fantasy or click ->",
container=False,
scale=5,
min_width=100,
elem_id="prompt_input_box"
)
random_button = gr.Button("Surprise Me", scale=1, min_width=10)
run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg")
def on_demo_load(request: gr.Request):
current_domain = request.request.headers.get("Host", "")
# Get the potential iframe parent domain from the Referer header
referer = request.request.headers.get("Referer", "")
iframe_parent_domain = ""
if referer:
try:
parsed_referer = urlparse(referer)
iframe_parent_domain = parsed_referer.netloc
except:
iframe_parent_domain = "Unable to parse referer"
params = dict(request.query_params)
print(f"load_demo, urlparams={params},cover={default_image},domain={current_domain},iframe={iframe_parent_domain}")
session_data = {
"params": params,
"client_ip": request.client.host,
"refer": referer,
"host": current_domain
}
if params.get("e", "0") == "1" or "nsfwais.io" in current_domain or "nsfwais.io" in iframe_parent_domain or "127.0.0.1" in current_domain or "127.0.0.1" in iframe_parent_domain:
#update the image
#bind events
#return [Image.open(default_image)], session_data
return session_data
return session_data
#return [], session_data
session_state = gr.State()
result.change(fn=lambda x,y:None , inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "{cfg["model_id"]}")''')
run_button.click(generate, inputs=[prompt], outputs=[result],trigger_mode="once",js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''')
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''(p)=>window.g(p)''')
demo.load(fn=on_demo_load, inputs=[], outputs=[session_state], js='''()=>onDemoLoad()''')
if __name__ == "__main__":
demo.queue(max_size=100).launch(show_api=False,show_error=False) |