File size: 18,046 Bytes
685ecb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cc3964
 
 
685ecb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from argparse import Namespace
import glob
import logging
from pathlib import Path
import os
import time
from typing import Optional, Tuple
from PIL import Image
from safetensors import safe_open
import torch
from torch import nn
import torchaudio
from src.model.modules import voicecraft
from src.model.modules.gemma import GemmaForCausalLM, KVCache
from src.model.modules.imagecraftconfig import ImageCraftConfig
from src.model.modules.imagecraftprocessor import (
    ImageCraftProcessor,
)
from src.model.modules.siglip import SiglipVisionModel

from transformers import AutoTokenizer

from src.model.modules.tokenizer import (
    AudioTokenizer,
    TextTokenizer,
    tokenize_audio,
    tokenize_text,
)


from src.utils import tools
from src.utils.image_utils import is_valid_image
from src.utils.model_utils import get_config, get_model_inputs
from src.utils.util import (
    replace_numbers_with_words,
    sample_top_p,
    save_to_buffer,
    save_to_file,
    split_line_to_sentences,
)

from huggingface_hub import HfApi

logger = logging.getLogger(__name__)


class ImageCraftMultiModalProjector(nn.Module):
    def __init__(self, config: ImageCraftConfig):
        super().__init__()
        self.linear = nn.Linear(
            config.vision_config.hidden_size,
            config.vision_config.projection_dim,
            bias=True,
        )

    def forward(self, image_features):
        hidden_states = self.linear(image_features)
        return hidden_states


class ImageCraft(nn.Module):
    config_class = ImageCraftConfig

    def __init__(self, config: ImageCraftConfig):
        super(ImageCraft, self).__init__()
        self.config = config
        self.vision_tower = SiglipVisionModel(config.vision_config)
        self.multi_modal_projector = ImageCraftMultiModalProjector(config)
        self.vocab_size = config.text_config.vocab_size

        self.language_model = GemmaForCausalLM(config.text_config)

        self.pad_token_id = (
            self.config.pad_token_id if self.config.pad_token_id is not None else -1
        )

        tokenizer = AutoTokenizer.from_pretrained(
            "google/paligemma-3b-pt-224", padding_side="right"
        )
        assert tokenizer.padding_side == "right"

        num_image_tokens = config.vision_config.num_image_tokens
        image_size = config.vision_config.image_size
        self.processor = ImageCraftProcessor(tokenizer, num_image_tokens, image_size)

        self.text_tokenizer = None

        self.voicecraft_model = None
        self.audio_tokenizer = None

        self.device = "cuda" if torch.cuda.is_available() else "cpu"

    def tie_weights(self):
        return self.language_model.tie_weights()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple:
        # Make sure the input is right-padded
        assert torch.all(attention_mask == 1), "The input cannot be padded"

        # 1. Extra the input embeddings
        # shape: (Batch_Size, Seq_Len, Hidden_Size)
        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)

        # 2. Merge text and images
        # [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
        selected_image_feature = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Hidden_Size]
        image_features = self.multi_modal_projector(selected_image_feature)

        # Merge the embeddings of the text tokens and the image tokens
        inputs_embeds, attention_mask, position_ids = (
            self._merge_input_ids_with_image_features(
                image_features, inputs_embeds, input_ids, attention_mask, kv_cache
            )
        )

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            kv_cache=kv_cache,
        )

        return outputs

    def _merge_input_ids_with_image_features(
        self,
        image_features: torch.Tensor,
        inputs_embeds: torch.Tensor,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        kv_cache: Optional[KVCache] = None,
    ):
        _, _, embed_dim = image_features.shape
        batch_size, sequence_length = input_ids.shape
        dtype, device = inputs_embeds.dtype, inputs_embeds.device
        # Shape: [Batch_Size, Seq_Len, Hidden_Size]
        scaled_image_features = image_features / (self.config.hidden_size**0.5)

        # Combine the embeddings of the image tokens, the text tokens and mask out all the padding tokens.
        final_embedding = torch.zeros(
            batch_size,
            sequence_length,
            embed_dim,
            dtype=inputs_embeds.dtype,
            device=inputs_embeds.device,
        )
        # Shape: [Batch_Size, Seq_Len]. True for text tokens
        text_mask = (input_ids != self.config.image_token_index) & (
            input_ids != self.pad_token_id
        )
        # Shape: [Batch_Size, Seq_Len]. True for image tokens
        image_mask = input_ids == self.config.image_token_index
        # Shape: [Batch_Size, Seq_Len]. True for padding tokens
        pad_mask = input_ids == self.pad_token_id

        # We need to expand the masks to the embedding dimension otherwise we can't use them in torch.where
        text_mask_expanded = text_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
        pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
        image_mask_expanded = image_mask.unsqueeze(-1).expand(-1, -1, embed_dim)

        # Add the text embeddings
        final_embedding = torch.where(
            text_mask_expanded, inputs_embeds, final_embedding
        )
        # Insert image embeddings. We can't use torch.where because the sequence length of scaled_image_features is not equal to the sequence length of the final embedding
        final_embedding = final_embedding.masked_scatter(
            image_mask_expanded, scaled_image_features
        )
        # Zero out padding tokens
        final_embedding = torch.where(
            pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding
        )

        #### CREATE THE ATTENTION MASK ####

        dtype, device = inputs_embeds.dtype, inputs_embeds.device
        min_dtype = torch.finfo(dtype).min
        q_len = inputs_embeds.shape[1]

        if kv_cache is None or kv_cache.num_items() == 0:
            # Do not mask any token, because we're in the prefill phase
            # This only works when we have no padding
            causal_mask = torch.full(
                (batch_size, q_len, q_len), fill_value=0, dtype=dtype, device=device
            )
        else:
            # Since we are generating tokens, the query must be one single token
            assert q_len == 1
            kv_len = kv_cache.num_items() + q_len
            # Also in this case we don't need to mask anything, since each query should be able to attend all previous tokens.
            # This only works when we have no padding
            causal_mask = torch.full(
                (batch_size, q_len, kv_len), fill_value=0, dtype=dtype, device=device
            )

        # Add the head dimension
        # [Batch_Size, Q_Len, KV_Len] -> [Batch_Size, Num_Heads_Q, Q_Len, KV_Len]
        causal_mask = causal_mask.unsqueeze(1)

        if kv_cache is not None and kv_cache.num_items() > 0:
            # The position of the query is just the last position
            position_ids = attention_mask.cumsum(-1)[:, -1]
            if position_ids.dim() == 1:
                position_ids = position_ids.unsqueeze(0)
        else:
            # Create a position_ids based on the size of the attention_mask
            # For masked tokens, use the number 1 as position.
            position_ids = (
                (attention_mask.cumsum(-1))
                .masked_fill_((attention_mask == 0), 1)
                .to(device)
            )

        return final_embedding, causal_mask, position_ids

    def _generate_caption(self, image, max_tokens=100, do_sample=False):
        prompt = "caption en"
        image = (
            image.convert("RGB")
            if is_valid_image(image)
            else Image.open(image).convert("RGB")
        )

        inputs = get_model_inputs(
            processor=self.processor, prompt=prompt, image=image, device=self.device
        )

        image.close()

        input_ids = inputs["input_ids"]
        attention_mask = inputs["attention_mask"]
        pixel_values = inputs["pixel_values"]

        kv_cache = KVCache()

        stop_token = self.processor.tokenizer.eos_token_id
        generated_tokens = []

        for _ in range(max_tokens):
            outputs = self(
                input_ids=input_ids,
                pixel_values=pixel_values,
                attention_mask=attention_mask,
                kv_cache=kv_cache,
            )
            kv_cache = outputs["kv_cache"]
            next_token_logits = outputs["logits"][:, -1, :]
            if do_sample:
                next_token_logits = torch.softmax(
                    next_token_logits / self.config.temperature, dim=-1
                )
                next_token = sample_top_p(next_token_logits, self.config.top_p)
            else:
                next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
            assert next_token.size() == (1, 1)
            next_token = next_token.squeeze(0)
            generated_tokens.append(next_token)
            if next_token.item() == stop_token:
                break
            input_ids = next_token.unsqueeze(-1)
            attention_mask = torch.cat(
                [attention_mask, torch.ones((1, 1), device=input_ids.device)], dim=-1
            )

        generated_tokens = torch.cat(generated_tokens, dim=-1)
        decoded_text = self.processor.tokenizer.decode(
            generated_tokens, skip_special_tokens=True
        )
        decoded_text = (
            parts[1] if len(parts := decoded_text.split("\n", 1)) > 1 else decoded_text
        )

        return decoded_text.rstrip(" .").strip().capitalize() + "."

    def _generate_speech(self, text: str, output_type="file"):

        sentences = split_line_to_sentences(text)

        voice_audio = (
            f"media/voicecraft/voices/{self.config.voicecraft_config.voice_audio_path}"
        )
        voice_transcript = self.config.voicecraft_config.voice_audio_transcript
        cut_off_sec = self.config.voicecraft_config.cut_off_sec

        decode_config = {
            "top_k": self.config.voicecraft_config.top_k,
            "top_p": self.config.voicecraft_config.top_p,
            "temperature": self.config.voicecraft_config.temperature,
            "stop_repetition": self.config.voicecraft_config.stop_repetition,
            "kvcache": self.config.voicecraft_config.kvcache,
            "codec_audio_sr": self.config.voicecraft_config.codec_audio_sr,
            "codec_sr": self.config.voicecraft_config.codec_sr,
            "silence_tokens": self.config.voicecraft_config.silence_tokens,
            "sample_batch_size": self.config.voicecraft_config.sample_batch_size,
        }

        info = torchaudio.info(voice_audio)
        audio_dur = info.num_frames / info.sample_rate
        prompt_end_frame = int(min(audio_dur, cut_off_sec) * info.sample_rate)

        audio_tensors = []
        transcript = voice_transcript

        for sentence in sentences:

            transcript += sentence + "\n"
            transcript = replace_numbers_with_words(transcript).replace("  ", " ")

            # phonemize
            phn2num = self.voicecraft_model.args.phn2num
            text_tokens = [
                phn2num[phn]
                for phn in tokenize_text(self.text_tokenizer, text=transcript.strip())
                if phn in phn2num
            ]
            text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
            text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])

            # encode audio
            encoded_frames = tokenize_audio(
                self.audio_tokenizer,
                voice_audio,
                offset=0,
                num_frames=prompt_end_frame,
            )
            original_audio = encoded_frames[0][0].transpose(2, 1)  # [1,T,K]
            model_args = vars(self.voicecraft_model.args)
            model_args = Namespace(**model_args)

            assert (
                original_audio.ndim == 3
                and original_audio.shape[0] == 1
                and original_audio.shape[2] == model_args.n_codebooks
            ), original_audio.shape

            # forward
            stime = time.time()
            if decode_config["sample_batch_size"] <= 1:
                _, gen_frames = self.voicecraft_model.inference_tts(
                    text_tokens.to(self.device),
                    text_tokens_lens.to(self.device),
                    original_audio[..., : model_args.n_codebooks].to(
                        self.device
                    ),  # [1,T,8]
                    top_k=decode_config["top_k"],
                    top_p=decode_config["top_p"],
                    temperature=decode_config["temperature"],
                    stop_repetition=decode_config["stop_repetition"],
                    kvcache=decode_config["kvcache"],
                    silence_tokens=(
                        eval(decode_config["silence_tokens"])
                        if type(decode_config["silence_tokens"]) == str
                        else decode_config["silence_tokens"]
                    ),
                )  # output is [1,K,T]
            else:
                _, gen_frames = self.voicecraft_model.inference_tts_batch(
                    text_tokens.to(self.device),
                    text_tokens_lens.to(self.device),
                    original_audio[..., : model_args.n_codebooks].to(
                        self.device
                    ),  # [1,T,8]
                    top_k=decode_config["top_k"],
                    top_p=decode_config["top_p"],
                    temperature=decode_config["temperature"],
                    stop_repetition=decode_config["stop_repetition"],
                    kvcache=decode_config["kvcache"],
                    batch_size=decode_config["sample_batch_size"],
                    silence_tokens=(
                        eval(decode_config["silence_tokens"])
                        if type(decode_config["silence_tokens"]) == str
                        else decode_config["silence_tokens"]
                    ),
                )  # output is [1,K,T]
            gen_sample = self.audio_tokenizer.decode([(gen_frames, None)])
            gen_audio = gen_sample[0].cpu()
            audio_tensors.append(gen_audio)

        output = None

        if output_type == "file":
            output = save_to_file(audio_tensors, decode_config["codec_audio_sr"])
        else:
            output = save_to_buffer(audio_tensors, decode_config["codec_audio_sr"])

        # Empty cuda cache between runs
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        return output

    @torch.inference_mode()
    def generate(
        self,
        image,
        max_tokens=30,
        do_sample=False,
        output_type="file",
    ):
        transcript = self._generate_caption(image, max_tokens, do_sample)
        speech = self._generate_speech(transcript, output_type)
        return transcript, speech

    @classmethod
    def from_pretrained(
        cls,
        model_path=None,
    ):
        api = HfApi()

        device = "cuda" if torch.cuda.is_available() else "cpu"

        env_config = tools.load_config()
        pretrained_dir = env_config["pretrained_dir"]
        imagecraft_cache_dir = f"{pretrained_dir}/imagecraft"
        voicecraft_cache_dir = f"{pretrained_dir}/voicecraft"

        state_dict = {}

        if Path(model_path).is_file():
            checkpoint = torch.load(model_path, weights_only=False)
            state_dict = checkpoint["state_dict"]

        else:

            model_path = api.snapshot_download(
                repo_id=model_path,
                repo_type="model",
                cache_dir=imagecraft_cache_dir,
                local_files_only=False,
            )

            safetensors_files = glob.glob(os.path.join(model_path, "*.safetensors"))

            for safetensors_file in safetensors_files:
                with safe_open(safetensors_file, framework="pt", device="cpu") as f:
                    for key in f.keys():
                        state_dict[key] = f.get_tensor(key)

        imagecraft_config = get_config()

        model = cls(imagecraft_config).to(device)

        # Load the state dict of the model
        model.load_state_dict(state_dict, strict=False)

        # Tie weights
        model.tie_weights()

        model = model.eval()

        # Load voicecraft module

        model.voicecraft_model = voicecraft.VoiceCraft.from_pretrained(
            f"pyp1/VoiceCraft_{model.config.voicecraft_config.model_name.replace('.pth', '')}",
            cache_dir=voicecraft_cache_dir,
        )

        encodec_fn = f"{voicecraft_cache_dir}/{model.config.voicecraft_config.encodec}"

        if not os.path.exists(encodec_fn):
            os.system(
                f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{model.config.voicecraft_config.encodec}"
            )
            os.system(f"mv {model.config.voicecraft_config.encodec} {encodec_fn}")

        model.audio_tokenizer = AudioTokenizer(
            signature=encodec_fn,
            device=device,
        )

        model.text_tokenizer = TextTokenizer(backend="espeak")

        model.voicecraft_model.to(device)

        return model