File size: 18,046 Bytes
685ecb2 9cc3964 685ecb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
from argparse import Namespace
import glob
import logging
from pathlib import Path
import os
import time
from typing import Optional, Tuple
from PIL import Image
from safetensors import safe_open
import torch
from torch import nn
import torchaudio
from src.model.modules import voicecraft
from src.model.modules.gemma import GemmaForCausalLM, KVCache
from src.model.modules.imagecraftconfig import ImageCraftConfig
from src.model.modules.imagecraftprocessor import (
ImageCraftProcessor,
)
from src.model.modules.siglip import SiglipVisionModel
from transformers import AutoTokenizer
from src.model.modules.tokenizer import (
AudioTokenizer,
TextTokenizer,
tokenize_audio,
tokenize_text,
)
from src.utils import tools
from src.utils.image_utils import is_valid_image
from src.utils.model_utils import get_config, get_model_inputs
from src.utils.util import (
replace_numbers_with_words,
sample_top_p,
save_to_buffer,
save_to_file,
split_line_to_sentences,
)
from huggingface_hub import HfApi
logger = logging.getLogger(__name__)
class ImageCraftMultiModalProjector(nn.Module):
def __init__(self, config: ImageCraftConfig):
super().__init__()
self.linear = nn.Linear(
config.vision_config.hidden_size,
config.vision_config.projection_dim,
bias=True,
)
def forward(self, image_features):
hidden_states = self.linear(image_features)
return hidden_states
class ImageCraft(nn.Module):
config_class = ImageCraftConfig
def __init__(self, config: ImageCraftConfig):
super(ImageCraft, self).__init__()
self.config = config
self.vision_tower = SiglipVisionModel(config.vision_config)
self.multi_modal_projector = ImageCraftMultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = GemmaForCausalLM(config.text_config)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
tokenizer = AutoTokenizer.from_pretrained(
"google/paligemma-3b-pt-224", padding_side="right"
)
assert tokenizer.padding_side == "right"
num_image_tokens = config.vision_config.num_image_tokens
image_size = config.vision_config.image_size
self.processor = ImageCraftProcessor(tokenizer, num_image_tokens, image_size)
self.text_tokenizer = None
self.voicecraft_model = None
self.audio_tokenizer = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def tie_weights(self):
return self.language_model.tie_weights()
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple:
# Make sure the input is right-padded
assert torch.all(attention_mask == 1), "The input cannot be padded"
# 1. Extra the input embeddings
# shape: (Batch_Size, Seq_Len, Hidden_Size)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# 2. Merge text and images
# [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
selected_image_feature = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
# [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Hidden_Size]
image_features = self.multi_modal_projector(selected_image_feature)
# Merge the embeddings of the text tokens and the image tokens
inputs_embeds, attention_mask, position_ids = (
self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, kv_cache
)
)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
kv_cache=kv_cache,
)
return outputs
def _merge_input_ids_with_image_features(
self,
image_features: torch.Tensor,
inputs_embeds: torch.Tensor,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
kv_cache: Optional[KVCache] = None,
):
_, _, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
dtype, device = inputs_embeds.dtype, inputs_embeds.device
# Shape: [Batch_Size, Seq_Len, Hidden_Size]
scaled_image_features = image_features / (self.config.hidden_size**0.5)
# Combine the embeddings of the image tokens, the text tokens and mask out all the padding tokens.
final_embedding = torch.zeros(
batch_size,
sequence_length,
embed_dim,
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
)
# Shape: [Batch_Size, Seq_Len]. True for text tokens
text_mask = (input_ids != self.config.image_token_index) & (
input_ids != self.pad_token_id
)
# Shape: [Batch_Size, Seq_Len]. True for image tokens
image_mask = input_ids == self.config.image_token_index
# Shape: [Batch_Size, Seq_Len]. True for padding tokens
pad_mask = input_ids == self.pad_token_id
# We need to expand the masks to the embedding dimension otherwise we can't use them in torch.where
text_mask_expanded = text_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
image_mask_expanded = image_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
# Add the text embeddings
final_embedding = torch.where(
text_mask_expanded, inputs_embeds, final_embedding
)
# Insert image embeddings. We can't use torch.where because the sequence length of scaled_image_features is not equal to the sequence length of the final embedding
final_embedding = final_embedding.masked_scatter(
image_mask_expanded, scaled_image_features
)
# Zero out padding tokens
final_embedding = torch.where(
pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding
)
#### CREATE THE ATTENTION MASK ####
dtype, device = inputs_embeds.dtype, inputs_embeds.device
min_dtype = torch.finfo(dtype).min
q_len = inputs_embeds.shape[1]
if kv_cache is None or kv_cache.num_items() == 0:
# Do not mask any token, because we're in the prefill phase
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, q_len), fill_value=0, dtype=dtype, device=device
)
else:
# Since we are generating tokens, the query must be one single token
assert q_len == 1
kv_len = kv_cache.num_items() + q_len
# Also in this case we don't need to mask anything, since each query should be able to attend all previous tokens.
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, kv_len), fill_value=0, dtype=dtype, device=device
)
# Add the head dimension
# [Batch_Size, Q_Len, KV_Len] -> [Batch_Size, Num_Heads_Q, Q_Len, KV_Len]
causal_mask = causal_mask.unsqueeze(1)
if kv_cache is not None and kv_cache.num_items() > 0:
# The position of the query is just the last position
position_ids = attention_mask.cumsum(-1)[:, -1]
if position_ids.dim() == 1:
position_ids = position_ids.unsqueeze(0)
else:
# Create a position_ids based on the size of the attention_mask
# For masked tokens, use the number 1 as position.
position_ids = (
(attention_mask.cumsum(-1))
.masked_fill_((attention_mask == 0), 1)
.to(device)
)
return final_embedding, causal_mask, position_ids
def _generate_caption(self, image, max_tokens=100, do_sample=False):
prompt = "caption en"
image = (
image.convert("RGB")
if is_valid_image(image)
else Image.open(image).convert("RGB")
)
inputs = get_model_inputs(
processor=self.processor, prompt=prompt, image=image, device=self.device
)
image.close()
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
pixel_values = inputs["pixel_values"]
kv_cache = KVCache()
stop_token = self.processor.tokenizer.eos_token_id
generated_tokens = []
for _ in range(max_tokens):
outputs = self(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
kv_cache=kv_cache,
)
kv_cache = outputs["kv_cache"]
next_token_logits = outputs["logits"][:, -1, :]
if do_sample:
next_token_logits = torch.softmax(
next_token_logits / self.config.temperature, dim=-1
)
next_token = sample_top_p(next_token_logits, self.config.top_p)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
assert next_token.size() == (1, 1)
next_token = next_token.squeeze(0)
generated_tokens.append(next_token)
if next_token.item() == stop_token:
break
input_ids = next_token.unsqueeze(-1)
attention_mask = torch.cat(
[attention_mask, torch.ones((1, 1), device=input_ids.device)], dim=-1
)
generated_tokens = torch.cat(generated_tokens, dim=-1)
decoded_text = self.processor.tokenizer.decode(
generated_tokens, skip_special_tokens=True
)
decoded_text = (
parts[1] if len(parts := decoded_text.split("\n", 1)) > 1 else decoded_text
)
return decoded_text.rstrip(" .").strip().capitalize() + "."
def _generate_speech(self, text: str, output_type="file"):
sentences = split_line_to_sentences(text)
voice_audio = (
f"media/voicecraft/voices/{self.config.voicecraft_config.voice_audio_path}"
)
voice_transcript = self.config.voicecraft_config.voice_audio_transcript
cut_off_sec = self.config.voicecraft_config.cut_off_sec
decode_config = {
"top_k": self.config.voicecraft_config.top_k,
"top_p": self.config.voicecraft_config.top_p,
"temperature": self.config.voicecraft_config.temperature,
"stop_repetition": self.config.voicecraft_config.stop_repetition,
"kvcache": self.config.voicecraft_config.kvcache,
"codec_audio_sr": self.config.voicecraft_config.codec_audio_sr,
"codec_sr": self.config.voicecraft_config.codec_sr,
"silence_tokens": self.config.voicecraft_config.silence_tokens,
"sample_batch_size": self.config.voicecraft_config.sample_batch_size,
}
info = torchaudio.info(voice_audio)
audio_dur = info.num_frames / info.sample_rate
prompt_end_frame = int(min(audio_dur, cut_off_sec) * info.sample_rate)
audio_tensors = []
transcript = voice_transcript
for sentence in sentences:
transcript += sentence + "\n"
transcript = replace_numbers_with_words(transcript).replace(" ", " ")
# phonemize
phn2num = self.voicecraft_model.args.phn2num
text_tokens = [
phn2num[phn]
for phn in tokenize_text(self.text_tokenizer, text=transcript.strip())
if phn in phn2num
]
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])
# encode audio
encoded_frames = tokenize_audio(
self.audio_tokenizer,
voice_audio,
offset=0,
num_frames=prompt_end_frame,
)
original_audio = encoded_frames[0][0].transpose(2, 1) # [1,T,K]
model_args = vars(self.voicecraft_model.args)
model_args = Namespace(**model_args)
assert (
original_audio.ndim == 3
and original_audio.shape[0] == 1
and original_audio.shape[2] == model_args.n_codebooks
), original_audio.shape
# forward
stime = time.time()
if decode_config["sample_batch_size"] <= 1:
_, gen_frames = self.voicecraft_model.inference_tts(
text_tokens.to(self.device),
text_tokens_lens.to(self.device),
original_audio[..., : model_args.n_codebooks].to(
self.device
), # [1,T,8]
top_k=decode_config["top_k"],
top_p=decode_config["top_p"],
temperature=decode_config["temperature"],
stop_repetition=decode_config["stop_repetition"],
kvcache=decode_config["kvcache"],
silence_tokens=(
eval(decode_config["silence_tokens"])
if type(decode_config["silence_tokens"]) == str
else decode_config["silence_tokens"]
),
) # output is [1,K,T]
else:
_, gen_frames = self.voicecraft_model.inference_tts_batch(
text_tokens.to(self.device),
text_tokens_lens.to(self.device),
original_audio[..., : model_args.n_codebooks].to(
self.device
), # [1,T,8]
top_k=decode_config["top_k"],
top_p=decode_config["top_p"],
temperature=decode_config["temperature"],
stop_repetition=decode_config["stop_repetition"],
kvcache=decode_config["kvcache"],
batch_size=decode_config["sample_batch_size"],
silence_tokens=(
eval(decode_config["silence_tokens"])
if type(decode_config["silence_tokens"]) == str
else decode_config["silence_tokens"]
),
) # output is [1,K,T]
gen_sample = self.audio_tokenizer.decode([(gen_frames, None)])
gen_audio = gen_sample[0].cpu()
audio_tensors.append(gen_audio)
output = None
if output_type == "file":
output = save_to_file(audio_tensors, decode_config["codec_audio_sr"])
else:
output = save_to_buffer(audio_tensors, decode_config["codec_audio_sr"])
# Empty cuda cache between runs
if torch.cuda.is_available():
torch.cuda.empty_cache()
return output
@torch.inference_mode()
def generate(
self,
image,
max_tokens=30,
do_sample=False,
output_type="file",
):
transcript = self._generate_caption(image, max_tokens, do_sample)
speech = self._generate_speech(transcript, output_type)
return transcript, speech
@classmethod
def from_pretrained(
cls,
model_path=None,
):
api = HfApi()
device = "cuda" if torch.cuda.is_available() else "cpu"
env_config = tools.load_config()
pretrained_dir = env_config["pretrained_dir"]
imagecraft_cache_dir = f"{pretrained_dir}/imagecraft"
voicecraft_cache_dir = f"{pretrained_dir}/voicecraft"
state_dict = {}
if Path(model_path).is_file():
checkpoint = torch.load(model_path, weights_only=False)
state_dict = checkpoint["state_dict"]
else:
model_path = api.snapshot_download(
repo_id=model_path,
repo_type="model",
cache_dir=imagecraft_cache_dir,
local_files_only=False,
)
safetensors_files = glob.glob(os.path.join(model_path, "*.safetensors"))
for safetensors_file in safetensors_files:
with safe_open(safetensors_file, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
imagecraft_config = get_config()
model = cls(imagecraft_config).to(device)
# Load the state dict of the model
model.load_state_dict(state_dict, strict=False)
# Tie weights
model.tie_weights()
model = model.eval()
# Load voicecraft module
model.voicecraft_model = voicecraft.VoiceCraft.from_pretrained(
f"pyp1/VoiceCraft_{model.config.voicecraft_config.model_name.replace('.pth', '')}",
cache_dir=voicecraft_cache_dir,
)
encodec_fn = f"{voicecraft_cache_dir}/{model.config.voicecraft_config.encodec}"
if not os.path.exists(encodec_fn):
os.system(
f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{model.config.voicecraft_config.encodec}"
)
os.system(f"mv {model.config.voicecraft_config.encodec} {encodec_fn}")
model.audio_tokenizer = AudioTokenizer(
signature=encodec_fn,
device=device,
)
model.text_tokenizer = TextTokenizer(backend="espeak")
model.voicecraft_model.to(device)
return model
|