File size: 11,156 Bytes
c5c6bad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ConvTranspose2d, cat, interpolate
from detectron2.structures import Instances, heatmaps_to_keypoints
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
_TOTAL_SKIPPED = 0
__all__ = [
"ROI_KEYPOINT_HEAD_REGISTRY",
"build_keypoint_head",
"BaseKeypointRCNNHead",
"KRCNNConvDeconvUpsampleHead",
]
ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD")
ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """
Registry for keypoint heads, which make keypoint predictions from per-region features.
The registered object will be called with `obj(cfg, input_shape)`.
"""
def build_keypoint_head(cfg, input_shape):
"""
Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`.
"""
name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME
return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, input_shape)
def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer):
"""
Arguments:
pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number
of instances in the batch, K is the number of keypoints, and S is the side length
of the keypoint heatmap. The values are spatial logits.
instances (list[Instances]): A list of M Instances, where M is the batch size.
These instances are predictions from the model
that are in 1:1 correspondence with pred_keypoint_logits.
Each Instances should contain a `gt_keypoints` field containing a `structures.Keypoint`
instance.
normalizer (float): Normalize the loss by this amount.
If not specified, we normalize by the number of visible keypoints in the minibatch.
Returns a scalar tensor containing the loss.
"""
heatmaps = []
valid = []
keypoint_side_len = pred_keypoint_logits.shape[2]
for instances_per_image in instances:
if len(instances_per_image) == 0:
continue
keypoints = instances_per_image.gt_keypoints
heatmaps_per_image, valid_per_image = keypoints.to_heatmap(
instances_per_image.proposal_boxes.tensor, keypoint_side_len
)
heatmaps.append(heatmaps_per_image.view(-1))
valid.append(valid_per_image.view(-1))
if len(heatmaps):
keypoint_targets = cat(heatmaps, dim=0)
valid = cat(valid, dim=0).to(dtype=torch.uint8)
valid = torch.nonzero(valid).squeeze(1)
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it separately
if len(heatmaps) == 0 or valid.numel() == 0:
global _TOTAL_SKIPPED
_TOTAL_SKIPPED += 1
storage = get_event_storage()
storage.put_scalar("kpts_num_skipped_batches", _TOTAL_SKIPPED, smoothing_hint=False)
return pred_keypoint_logits.sum() * 0
N, K, H, W = pred_keypoint_logits.shape
pred_keypoint_logits = pred_keypoint_logits.view(N * K, H * W)
keypoint_loss = F.cross_entropy(
pred_keypoint_logits[valid], keypoint_targets[valid], reduction="sum"
)
# If a normalizer isn't specified, normalize by the number of visible keypoints in the minibatch
if normalizer is None:
normalizer = valid.numel()
keypoint_loss /= normalizer
return keypoint_loss
def keypoint_rcnn_inference(pred_keypoint_logits: torch.Tensor, pred_instances: List[Instances]):
"""
Post process each predicted keypoint heatmap in `pred_keypoint_logits` into (x, y, score)
and add it to the `pred_instances` as a `pred_keypoints` field.
Args:
pred_keypoint_logits (Tensor): A tensor of shape (R, K, S, S) where R is the total number
of instances in the batch, K is the number of keypoints, and S is the side length of
the keypoint heatmap. The values are spatial logits.
pred_instances (list[Instances]): A list of N Instances, where N is the number of images.
Returns:
None. Each element in pred_instances will contain extra "pred_keypoints" and
"pred_keypoint_heatmaps" fields. "pred_keypoints" is a tensor of shape
(#instance, K, 3) where the last dimension corresponds to (x, y, score).
The scores are larger than 0. "pred_keypoint_heatmaps" contains the raw
keypoint logits as passed to this function.
"""
# flatten all bboxes from all images together (list[Boxes] -> Rx4 tensor)
bboxes_flat = cat([b.pred_boxes.tensor for b in pred_instances], dim=0)
pred_keypoint_logits = pred_keypoint_logits.detach()
keypoint_results = heatmaps_to_keypoints(pred_keypoint_logits, bboxes_flat.detach())
num_instances_per_image = [len(i) for i in pred_instances]
keypoint_results = keypoint_results[:, :, [0, 1, 3]].split(num_instances_per_image, dim=0)
heatmap_results = pred_keypoint_logits.split(num_instances_per_image, dim=0)
for keypoint_results_per_image, heatmap_results_per_image, instances_per_image in zip(
keypoint_results, heatmap_results, pred_instances
):
# keypoint_results_per_image is (num instances)x(num keypoints)x(x, y, score)
# heatmap_results_per_image is (num instances)x(num keypoints)x(side)x(side)
instances_per_image.pred_keypoints = keypoint_results_per_image
instances_per_image.pred_keypoint_heatmaps = heatmap_results_per_image
class BaseKeypointRCNNHead(nn.Module):
"""
Implement the basic Keypoint R-CNN losses and inference logic described in
Sec. 5 of :paper:`Mask R-CNN`.
"""
@configurable
def __init__(self, *, num_keypoints, loss_weight=1.0, loss_normalizer=1.0):
"""
NOTE: this interface is experimental.
Args:
num_keypoints (int): number of keypoints to predict
loss_weight (float): weight to multiple on the keypoint loss
loss_normalizer (float or str):
If float, divide the loss by `loss_normalizer * #images`.
If 'visible', the loss is normalized by the total number of
visible keypoints across images.
"""
super().__init__()
self.num_keypoints = num_keypoints
self.loss_weight = loss_weight
assert loss_normalizer == "visible" or isinstance(loss_normalizer, float), loss_normalizer
self.loss_normalizer = loss_normalizer
@classmethod
def from_config(cls, cfg, input_shape):
ret = {
"loss_weight": cfg.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT,
"num_keypoints": cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS,
}
normalize_by_visible = (
cfg.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
) # noqa
if not normalize_by_visible:
batch_size_per_image = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE
positive_sample_fraction = cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
ret["loss_normalizer"] = (
ret["num_keypoints"] * batch_size_per_image * positive_sample_fraction
)
else:
ret["loss_normalizer"] = "visible"
return ret
def forward(self, x, instances: List[Instances]):
"""
Args:
x: input 4D region feature(s) provided by :class:`ROIHeads`.
instances (list[Instances]): contains the boxes & labels corresponding
to the input features.
Exact format is up to its caller to decide.
Typically, this is the foreground instances in training, with
"proposal_boxes" field and other gt annotations.
In inference, it contains boxes that are already predicted.
Returns:
A dict of losses if in training. The predicted "instances" if in inference.
"""
x = self.layers(x)
if self.training:
num_images = len(instances)
normalizer = (
None if self.loss_normalizer == "visible" else num_images * self.loss_normalizer
)
return {
"loss_keypoint": keypoint_rcnn_loss(x, instances, normalizer=normalizer)
* self.loss_weight
}
else:
keypoint_rcnn_inference(x, instances)
return instances
def layers(self, x):
"""
Neural network layers that makes predictions from regional input features.
"""
raise NotImplementedError
# To get torchscript support, we make the head a subclass of `nn.Sequential`.
# Therefore, to add new layers in this head class, please make sure they are
# added in the order they will be used in forward().
@ROI_KEYPOINT_HEAD_REGISTRY.register()
class KRCNNConvDeconvUpsampleHead(BaseKeypointRCNNHead, nn.Sequential):
"""
A standard keypoint head containing a series of 3x3 convs, followed by
a transpose convolution and bilinear interpolation for upsampling.
It is described in Sec. 5 of :paper:`Mask R-CNN`.
"""
@configurable
def __init__(self, input_shape, *, num_keypoints, conv_dims, **kwargs):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature
conv_dims: an iterable of output channel counts for each conv in the head
e.g. (512, 512, 512) for three convs outputting 512 channels.
"""
super().__init__(num_keypoints=num_keypoints, **kwargs)
# default up_scale to 2.0 (this can be made an option)
up_scale = 2.0
in_channels = input_shape.channels
for idx, layer_channels in enumerate(conv_dims, 1):
module = Conv2d(in_channels, layer_channels, 3, stride=1, padding=1)
self.add_module("conv_fcn{}".format(idx), module)
self.add_module("conv_fcn_relu{}".format(idx), nn.ReLU())
in_channels = layer_channels
deconv_kernel = 4
self.score_lowres = ConvTranspose2d(
in_channels, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1
)
self.up_scale = up_scale
for name, param in self.named_parameters():
if "bias" in name:
nn.init.constant_(param, 0)
elif "weight" in name:
# Caffe2 implementation uses MSRAFill, which in fact
# corresponds to kaiming_normal_ in PyTorch
nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg, input_shape)
ret["input_shape"] = input_shape
ret["conv_dims"] = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS
return ret
def layers(self, x):
for layer in self:
x = layer(x)
x = interpolate(x, scale_factor=self.up_scale, mode="bilinear", align_corners=False)
return x
|