File size: 4,157 Bytes
c802290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torchvision.models as models

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, 
                              stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        
        self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, 
                              kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
        
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class ResNet50(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNet50, self).__init__()
        
        self.in_channels = 64
        
        # Initial layers
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        # Residual layers
        self.layer1 = self._make_layer(64, 3)
        self.layer2 = self._make_layer(128, 4, stride=2)
        self.layer3 = self._make_layer(256, 6, stride=2)
        self.layer4 = self._make_layer(512, 3, stride=2)
        
        # Classification head
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
        
        # Weight initialization
        self._initialize_weights()

    def _make_layer(self, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion,
                         kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * Bottleneck.expansion),
            )

        layers = []
        layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample))
        
        self.in_channels = out_channels * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

def create_model(num_classes, pretrained=False):
    """
    Create a ResNet-50 model
    Args:
        num_classes: Number of output classes
        pretrained: Whether to use pretrained weights from ImageNet
    """
    # Load model with or without pretrained weights
    model = models.resnet50(pretrained=pretrained)
    
    # Modify the final layer for our number of classes
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, num_classes)
    
    return model