File size: 25,289 Bytes
54a7220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging

import torch
import torch.distributed as dist
import torch.nn as nn
from typing import Optional, Tuple, List
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F

from lavis.common.registry import registry
from lavis.models.base_model import all_gather_with_grad, concat_all_gather
from lavis.models.blip2_models.blip2 import (
    compute_sim_matrix,
    disabled_train,
)
from lavis.models.blip_models.blip_outputs import BlipOutput
from transformers.modeling_outputs import ModelOutput

from models.q_formers.blip2 import Blip2Base
from models.q_formers.position_encoding import PositionEmbeddings
from ldm.modules.diffusionmodules.util import conv_nd

import time


class BlipOutputFeatures(ModelOutput):
    """
    Data class of features from BlipFeatureExtractor.

    Args:
        image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional
        image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional
        text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional
        text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional

        The first embedding or feature is for the [CLS] token.

        Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space.
    """

    image_embeds: Optional[torch.FloatTensor] = None
    image_embeds_proj: Optional[torch.FloatTensor] = None

    text_embeds: Optional[torch.FloatTensor] = None
    text_embeds_proj: Optional[torch.FloatTensor] = None

    multimodal_embeds: Optional[torch.FloatTensor] = None

    hidden_states: List[torch.FloatTensor] = None

    attentions: List[torch.FloatTensor] = None
    cross_attentions: List[torch.FloatTensor] = None


class Blip2Qformer(Blip2Base):
    """
    BLIP2 first-stage model with Q-former and ViT.
    Supported model types:
        - pretrained: pretrained model with vit-g
        - pretrain_vitL: pretrained model with vit-large
        - coco: fintuned model on coco
    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip2", "pretrain")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "pretrain": "configs/models/blip2/blip2_pretrain.yaml",
        "pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
        "coco": "configs/models/blip2/blip2_coco.yaml",
    }

    def __init__(
        self,
        model_name="bert-base-uncased",
        vit_model="eva_clip_g",
        img_size=224,
        drop_path_rate=0,
        head_dropout=0,
        use_grad_checkpoint=False,
        vit_precision="fp16",
        freeze_vit=True,
        num_query_token=32,
        cross_attention_freq=2,
        embed_dim=256,
        max_txt_len=32,
        query_token_init_type='normal',
        max_position_embeddings=512,
        multilevels=[],
    ):
        super().__init__()

        self.num_query_token = num_query_token

        self.tokenizer = self.init_tokenizer(model_name)

        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
            vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, len(multilevels),
        )
        self.multilevels = multilevels

        self.crossattn_embeddings = PositionEmbeddings(max_position_embeddings, self.visual_encoder.num_features) 

        self.Qformer, self.query_tokens = self.init_Qformer(
            num_query_token, self.visual_encoder.num_features, model_name, head_dropout, cross_attention_freq, query_token_init_type,
        )
        self.Qformer.resize_token_embeddings(len(self.tokenizer))
        state_dict = self.Qformer.state_dict()
        for name, param in self.Qformer.named_parameters():
            if "_query" in name:
                key_orig = name.replace("_query", "")
                param.data.copy_(state_dict[key_orig])

        self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
        self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
        self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
        self.temp = nn.Parameter(0.07 * torch.ones([]))
        self.max_txt_len = max_txt_len
        self.visual_encoder.requires_grad_(False)

        for name, param in self.Qformer.named_parameters():
            if 'crossattention' in name:
                param.requires_grad = True
            else:
                param.requires_grad = False

        del self.Qformer.cls
        del self.vision_proj
        del self.text_proj
        del self.itm_head
        del self.temp
        
    def forward(self, samples):
        image = samples["image"]
        text = samples["text_input"]

        image_embeds = self.ln_vision(self.visual_encoder(image))
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)

        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            use_cache=True,
            return_dict=True,
        )

        image_feats = F.normalize(
            self.vision_proj(query_output.last_hidden_state), dim=-1
        )

        text_tokens = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(image.device)
        text_output = self.Qformer.bert(
            text_tokens.input_ids,
            attention_mask=text_tokens.attention_mask,
            return_dict=True,
        )
        text_feat = F.normalize(
            self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
        )

        ###============== Image-text Contrastive ===================###
        image_feats_all = concat_all_gather(
            image_feats
        )  # [batch_size*num_gpu, num_query_tokens, embed_dim]
        text_feat_all = concat_all_gather(text_feat)  # [batch_size*num_gpu, embed_dim]

        sim_q2t = torch.matmul(
            image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)
        ).squeeze()
        # [batch_size, batch_size*num_gpu, num_query_tokens]

        # image-text similarity: aggregate across all query tokens
        sim_i2t, _ = sim_q2t.max(-1)
        sim_i2t = sim_i2t / self.temp

        # text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
        sim_t2q = torch.matmul(
            text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)
        ).squeeze()

        # text-image similarity: aggregate across all query tokens
        sim_t2i, _ = sim_t2q.max(-1)
        sim_t2i = sim_t2i / self.temp  # [batch_size, batch_size*num_gpu]

        rank = dist.get_rank()
        bs = image.size(0)
        targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(
            image.device
        )

        if "image_id" in samples.keys(): #coco retrieval finetuning
            image_ids = samples["image_id"].view(-1,1)
            image_ids_all = concat_all_gather(image_ids)
            pos_idx = torch.eq(image_ids, image_ids_all.t()).float()       
            sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)   
            sim_targets = 0.9 * sim_targets + 0.1 * torch.ones_like(sim_targets) / sim_targets.size(1)

            loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_targets,dim=1).mean()
            loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_targets,dim=1).mean()     
            loss_itc = (loss_t2i+loss_i2t)/2  
        else:                     
            loss_itc = (
                F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
                + F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)
            ) / 2

        ###============== Image-text Matching ===================###
        text_input_ids_world = concat_all_gather(text_tokens.input_ids)
        text_attention_mask_world = concat_all_gather(text_tokens.attention_mask)
        image_embeds_world = all_gather_with_grad(image_embeds)
        with torch.no_grad():
            if "image_id" in samples.keys():
                mask = torch.eq(image_ids, image_ids_all.t())
                sim_t2i.masked_fill_(mask, -10000)
                sim_i2t.masked_fill_(mask, -10000)
            else:    
                sim_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
                sim_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)            
                
            weights_t2i = F.softmax(sim_t2i, dim=1)
            weights_i2t = F.softmax(sim_i2t, dim=1)

        # select a negative image for each text
        image_embeds_neg = []
        for b in range(bs):
            neg_idx = torch.multinomial(weights_t2i[b], 1).item()
            image_embeds_neg.append(image_embeds_world[neg_idx])
        image_embeds_neg = torch.stack(image_embeds_neg, dim=0)

        # select a negative text for each image
        text_ids_neg = []
        text_atts_neg = []
        for b in range(bs):
            neg_idx = torch.multinomial(weights_i2t[b], 1).item()
            text_ids_neg.append(text_input_ids_world[neg_idx])
            text_atts_neg.append(text_attention_mask_world[neg_idx])

        text_ids_neg = torch.stack(text_ids_neg, dim=0)
        text_atts_neg = torch.stack(text_atts_neg, dim=0)

        text_ids_all = torch.cat(
            [text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0
        )  # pos, pos, neg
        text_atts_all = torch.cat(
            [text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
            dim=0,
        )

        query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
        query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to(
            image.device
        )
        attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)

        image_embeds_all = torch.cat(
            [image_embeds, image_embeds_neg, image_embeds], dim=0
        )  # pos, neg, pos
        image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to(
            image.device
        )

        output_itm = self.Qformer.bert(
            text_ids_all,
            query_embeds=query_tokens_itm,
            attention_mask=attention_mask_all,
            encoder_hidden_states=image_embeds_all,
            encoder_attention_mask=image_atts_all,
            return_dict=True,
        )

        vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :]
        vl_output = self.itm_head(vl_embeddings)
        logits = vl_output.mean(dim=1)

        itm_labels = torch.cat(
            [torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
            dim=0,
        ).to(image.device)
        loss_itm = F.cross_entropy(logits, itm_labels)

        ##================= Image Captioning ========================##
        decoder_input_ids = text_tokens.input_ids.clone()
        decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
        labels = decoder_input_ids.masked_fill(
            decoder_input_ids == self.tokenizer.pad_token_id, -100
        )

        query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
            image.device
        )
        attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1)
        lm_output = self.Qformer(
            decoder_input_ids,
            attention_mask=attention_mask,
            past_key_values=query_output.past_key_values,
            return_dict=True,
            labels=labels,
        )

        loss_lm = lm_output.loss

        return BlipOutput(
            loss=loss_itc + loss_itm + loss_lm,
            loss_itc=loss_itc,
            loss_itm=loss_itm,
            loss_lm=loss_lm,
        )

    @torch.no_grad()
    def generate(
        self,
        samples,
        use_nucleus_sampling=False,
        num_beams=3,
        max_length=30,
        min_length=10,
        top_p=0.9,
        repetition_penalty=1.0,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
            use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            max_length (int): The maximum length of the sequence to be generated.
            min_length (int): The minimum length of the sequence to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions to be generated for each image.
        Returns:
            captions (list): A list of strings of length batch_size * num_captions.
        """
        image = samples["image"]
        image_embeds = self.ln_vision(self.visual_encoder(image))

        if not use_nucleus_sampling:
            image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
        else:
            num_beams = 1
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        model_kwargs = {
            "encoder_hidden_states": image_embeds,
            "encoder_attention_mask": image_atts,
        }

        input_ids = (
            torch.LongTensor(image.size(0), 1)
            .fill_(self.tokenizer.bos_token_id)
            .to(image.device)
        )
        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)

        outputs = self.Qformer.generate(
            input_ids=input_ids,
            query_embeds=query_tokens,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            do_sample=use_nucleus_sampling,
            top_p=top_p,
            eos_token_id=self.tokenizer.sep_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            **model_kwargs
        )
        captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
        return captions

    def forward_visual_encoder(self, image):
        with torch.no_grad():
            with self.maybe_autocast():
                image_embeds_frozen = self.visual_encoder(image, output_hidden_states=True)
        image_embeds_frozen = [ln(image_embeds_frozen[lvl]) for lvl, ln in zip(self.multilevels, self.ln_vision)]
        image_embeds_frozen = [image_embed.float() for image_embed in image_embeds_frozen]
        image_atts = [torch.ones(
            image_embed.size()[:-1], dtype=torch.long
        ).to(self.device) for image_embed in image_embeds_frozen]
        return image_embeds_frozen, image_atts

    def forward_qformer(self, caption, image_embeds_frozen, image_atts, output_hidden_states=False):
        query_tokens = self.query_tokens.expand(
            image_embeds_frozen.shape[0], -1, -1
        )
        query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
            self.device
        )
        text = self.tokenizer(caption, return_tensors="pt", padding=True, truncation=True).to(
            self.device
        )
        attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
        query_pos_embeds = self.query_tokens.repeat(image_embeds_frozen.shape[0], 1, 1)

        output = self.Qformer.bert(
            text.input_ids,
            query_embeds=query_tokens,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds_frozen,
            encoder_attention_mask=image_atts,
            query_pos_embeds=query_pos_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        hidden_states = [feat[:, : query_tokens.size(1), :] for feat in output.hidden_states]

        return hidden_states

    def forward_qformer(self, caption, image_embeds_frozen, image_atts):
        bs = image_embeds_frozen[0].shape[0]

        query_tokens = self.query_tokens.expand(bs, -1, -1)
        query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(self.device)
        text = self.tokenizer(['']*len(caption), return_tensors="pt", padding=True, truncation=True, max_length=512).to(
            self.device
        )

        attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
        query_pos_embeds = self.query_tokens.repeat(bs, 1, 1)

        output = self.Qformer.bert(
            text.input_ids,
            query_embeds=query_tokens,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds_frozen,
            encoder_attention_mask=image_atts,
            query_pos_embeds=query_pos_embeds,
            output_hidden_states=True,
            return_dict=True,
        )

        hidden_states = [feat[:, : query_tokens.size(1), :] for feat in output.hidden_states]
        return hidden_states

    def forward_image(self, image):
        image_embeds = self.ln_vision(self.visual_encoder(image))
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)

        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )
        return query_output.last_hidden_state, image_embeds

    def forward_text(self, text_tokens):
        text_output = self.Qformer.bert(
            text_tokens.input_ids,
            attention_mask=text_tokens.attention_mask,
            return_dict=True,
        )
        return text_output.last_hidden_state[:, 0, :]

    def compute_itm(self, image_inputs, text_ids, text_atts):
        image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to(
            image_inputs.device
        )
        query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1)
        query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
            image_inputs.device
        )
        attention_mask = torch.cat([query_atts, text_atts], dim=1)
        output_itm = self.Qformer.bert(
            text_ids,
            query_embeds=query_tokens,
            attention_mask=attention_mask,
            encoder_hidden_states=image_inputs,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )
        vl_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :]
        itm_logit = self.itm_head(vl_embeddings)
        itm_logit = itm_logit[:, :, 1].mean(dim=1)
        return itm_logit

    @torch.no_grad()
    def extract_features(self, samples, mode="multimodal"):
        """
        Extract features for multimodal or unimodal samples.
        Args:
            samples (dict): A dictionary of samples, containing the following keys:
                - image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
                    Raw images should be preprocessed before being passed to feature extractor.
                - text_input (list): A list of strings containing the text, length B.
            mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
                If "multimodal", return image features and multimodal features;
                if "text", return text features;
                if "image", return image features.
                Default: "multimodal".
        Returns:
            BlipOutputFeatures: A BlipOutputFeatures object containing the features.
                See lavis/models/blip_models/blip_outputs.py for more details.
        """
        image = samples.get("image")
        caption = samples.get("text_input")

        # assert mode is one of "image", "text", "multimodal"
        assert mode in [
            "image",
            "text",
            "multimodal",
        ], "mode must be one of 'image', 'text', 'multimodal'"

        # initalize output
        image_embeds, text_embeds, multimodal_embeds = None, None, None
        image_features, text_features = None, None

        if mode == "image":
            assert (
                image is not None
            ), "Image is not provided for mode 'image' or 'multimodal'"
            # return query features
            with self.maybe_autocast():
                image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
            image_embeds_frozen = image_embeds_frozen.float()
            image_atts = torch.ones(
                image_embeds_frozen.size()[:-1], dtype=torch.long
            ).to(self.device)
            query_tokens = self.query_tokens.expand(
                image_embeds_frozen.shape[0], -1, -1
            )

            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds_frozen,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            image_embeds = query_output.last_hidden_state
            image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)

        elif mode == "text":
            assert (
                caption is not None
            ), "text input is None for mode 'text' or 'multimodal'"

            # return text features
            text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
                self.device
            )

            text_output = self.Qformer.bert(
                text.input_ids,
                attention_mask=text.attention_mask,
                return_dict=True,
            )

            text_embeds = text_output.last_hidden_state
            text_features = self.text_proj(text_embeds)
            text_features = F.normalize(text_features, dim=-1)

        elif mode == "multimodal":
            # return multimodel query features
            with self.maybe_autocast():
                image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
            image_embeds_frozen = image_embeds_frozen.float()
            image_atts = torch.ones(
                image_embeds_frozen.size()[:-1], dtype=torch.long
            ).to(self.device)
            query_tokens = self.query_tokens.expand(
                image_embeds_frozen.shape[0], -1, -1
            )
            query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
                self.device
            )

            text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
                self.device
            )
            attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)

            output = self.Qformer.bert(
                text.input_ids,
                query_embeds=query_tokens,
                attention_mask=attention_mask,
                encoder_hidden_states=image_embeds_frozen,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            multimodal_embeds = output.last_hidden_state[:, : query_tokens.size(1), :]

        return BlipOutputFeatures(
            image_embeds=image_embeds,
            image_embeds_proj=image_features,
            text_embeds=text_embeds,
            text_embeds_proj=text_features,
            multimodal_embeds=multimodal_embeds,
        )

    @classmethod
    def from_config(cls, cfg):
        vit_model = cfg.get("vit_model", "eva_clip_g")
        img_size = cfg.get("image_size")
        num_query_token = cfg.get("num_query_token")
        cross_attention_freq = cfg.get("cross_attention_freq", 2)

        drop_path_rate = cfg.get("drop_path_rate", 0)
        use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
        vit_precision = cfg.get("vit_precision", "fp16")
        freeze_vit = cfg.get("freeze_vit", True)

        max_txt_len = cfg.get("max_txt_len", 32)

        model = cls(
            vit_model=vit_model,
            img_size=img_size,
            drop_path_rate=drop_path_rate,
            use_grad_checkpoint=use_grad_checkpoint,
            vit_precision=vit_precision,
            freeze_vit=freeze_vit,
            num_query_token=num_query_token,
            cross_attention_freq=cross_attention_freq,
            max_txt_len=max_txt_len,
        )
        model.load_checkpoint_from_config(cfg)

        return model

    def compute_sim_matrix(self, data_loader, task_cfg):
        """
        Compute similarity i2t, t2i matrix for the given data loader.
        """
        k_test = task_cfg.k_test

        return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)