Spaces:
Runtime error
Runtime error
File size: 8,017 Bytes
54a7220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Copied from: https://github.com/facebookresearch/detectron2/blob/master/demo/predictor.py
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import pdb
import cv2
import copy
import torch
import numpy as np
import detectron2.data.transforms as T
from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
from mask2former.data.dataset_mappers.crop_augmentations import BatchResizeShortestEdge, EntityCrop, EntityCropTransform
class VisualizationDemo(object):
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
self.predictor = CropFormerPredictor(cfg)
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
predictions = self.predictor(image)
return predictions
class CropFormerPredictor(DefaultPredictor):
"""
"""
def __init__(self, cfg):
super().__init__(cfg)
def generate_img_augs(self):
shortest_side = np.random.choice([self.cfg.INPUT.MIN_SIZE_TEST])
augs = [
T.ResizeShortestEdge(
(shortest_side,),
self.cfg.INPUT.MAX_SIZE_TEST,
self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
),
]
# Build original image augmentation
crop_augs = []
entity_crops = EntityCrop(self.cfg.ENTITY.CROP_AREA_RATIO,
self.cfg.ENTITY.CROP_STRIDE_RATIO,
self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST,
False)
crop_augs.append(entity_crops)
entity_resize = BatchResizeShortestEdge((shortest_side,), self.cfg.INPUT.MAX_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING)
crop_augs.append(entity_resize)
# augs = T.AugmentationList(augs)
crop_augs = T.AugmentationList(crop_augs)
return augs, crop_augs
def __call__(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
# Apply pre-processing to image.
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
# build cropformer augmentations
augs, crop_augs = self.generate_img_augs()
height, width = original_image.shape[:2]
aug_input_ori = T.AugInput(copy.deepcopy(original_image))
aug_input_ori, _ = T.apply_transform_gens(augs, aug_input_ori)
image_ori = aug_input_ori.image
image_ori = torch.as_tensor(image_ori.astype("float32").transpose(2, 0, 1))
aug_input_crop = T.AugInput(copy.deepcopy(original_image))
transforms_crop = crop_augs(aug_input_crop)
image_crop = aug_input_crop.image
assert len(image_crop.shape)==4, "the image shape must be [N, H, W, C]"
image_crop = torch.as_tensor(image_crop.astype("float32").transpose(0, 3, 1, 2))
for transform_type in transforms_crop:
if isinstance(transform_type, EntityCropTransform):
crop_axises = transform_type.crop_axises
crop_indexes = transform_type.crop_indexes
inputs = {"image": image_ori,
"height": height,
"width": width,
"image_crop": image_crop,
"crop_region": crop_axises,
"crop_indexes": crop_indexes
}
# pdb.set_trace()
predictions = self.model([inputs])[0]
return predictions
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = CropFormerPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5
|