Spaces:
Running
Running
File size: 5,953 Bytes
a167a78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import cv2
import numpy as np
import random
import tempfile
import os # Ensure os is imported
from moviepy.video.io.VideoFileClip import VideoFileClip
def add_and_detect_watermark_video(video_path, watermark_text, num_watermarks=5):
def add_watermark_to_frame(frame):
watermark_positions = []
# Resize frame to be divisible by 8 (required for DCT)
h, w, _ = frame.shape
h_new = (h // 8) * 8
w_new = (w // 8) * 8
frame_resized = cv2.resize(frame, (w_new, h_new))
# Convert to YCrCb color space and extract Y channel
ycrcb_image = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2YCrCb)
y_channel, cr_channel, cb_channel = cv2.split(ycrcb_image)
# Apply DCT to the Y channel
dct_y = cv2.dct(np.float32(y_channel))
# Add watermark in the DCT domain
rows, cols = dct_y.shape
font = cv2.FONT_HERSHEY_SIMPLEX
for _ in range(num_watermarks):
text_size = cv2.getTextSize(watermark_text, font, 0.5, 1)[0]
text_x = random.randint(0, cols - text_size[0])
text_y = random.randint(text_size[1], rows)
watermark = np.zeros_like(dct_y)
watermark = cv2.putText(watermark, watermark_text, (text_x, text_y), font, 0.5, (1, 1, 1), 1, cv2.LINE_AA)
dct_y += watermark * 0.01
watermark_positions.append((text_x, text_y, text_size[0], text_size[1]))
# Apply inverse DCT
idct_y = cv2.idct(dct_y)
# Merge channels and convert back to BGR
ycrcb_image[:, :, 0] = idct_y
watermarked_frame = cv2.cvtColor(ycrcb_image, cv2.COLOR_YCrCb2BGR)
# Highlight watermarks for visualization
watermark_highlight = watermarked_frame.copy()
for (text_x, text_y, text_w, text_h) in watermark_positions:
cv2.putText(watermark_highlight, watermark_text, (text_x, text_y), font, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
cv2.rectangle(watermark_highlight, (text_x, text_y - text_h), (text_x + text_w, text_y), (0, 0, 255), 2)
return watermarked_frame, watermark_highlight
try:
# Load video using MoviePy
video = VideoFileClip(video_path)
# Apply watermark to each frame
video_with_watermark = video.fl_image(lambda frame: add_watermark_to_frame(frame)[0])
video_with_highlight = video.fl_image(lambda frame: add_watermark_to_frame(frame)[1])
# Create temporary files for output videos
temp_fd, watermarked_video_path = tempfile.mkstemp(suffix=".mp4")
temp_fd_highlight, highlight_video_path = tempfile.mkstemp(suffix=".mp4")
os.close(temp_fd)
os.close(temp_fd_highlight)
# Write output videos
video_with_watermark.write_videofile(watermarked_video_path, codec='libx264')
video_with_highlight.write_videofile(highlight_video_path, codec='libx264')
return watermarked_video_path, highlight_video_path
except Exception as e:
print(f"An error occurred: {e}")
return None, None
def detect_watermark_video(video_path, watermark_text="WATERMARK"):
"""Detect watermarks in a video file using OpenCV.
Args:
video_path (str): Path to the video file
watermark_text (str): The watermark text to detect
Returns:
str: Path to the output video with detected watermarks
"""
try:
# Use OpenCV directly for frame processing
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}")
return None
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Create output video file
temp_fd, output_path = tempfile.mkstemp(suffix=".mp4")
os.close(temp_fd) # Make sure to close the file descriptor
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # MP4 codec
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Track detection results
frame_count = 0
detected_frames = 0
# Process each frame
while True:
ret, frame = cap.read()
if not ret:
break
# Apply watermark detection to the frame
frame_count += 1
# Detect watermark in current frame
ycrcb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2YCrCb)
y_channel, _, _ = cv2.split(ycrcb_image)
# Check if frame dimensions are suitable for DCT
h, w = y_channel.shape[:2]
if h % 8 != 0 or w % 8 != 0:
y_channel = cv2.resize(y_channel, ((w//8)*8, (h//8)*8))
dct_y = cv2.dct(np.float32(y_channel))
# Simple detection logic: look for anomalies in DCT coefficients
mid_freq_sum = np.sum(np.abs(dct_y[2:6, 2:6]))
detected = mid_freq_sum > 1000 # Threshold for detection
if detected:
detected_frames += 1
# Add visual indicator of detection
frame = cv2.putText(frame, "WATERMARK DETECTED", (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
out.write(frame)
# Release resources
cap.release()
out.release()
print(f"Processed {frame_count} frames, detected watermarks in {detected_frames} frames")
return output_path
except Exception as e:
print(f"Error detecting watermark in video: {e}")
return None
|