File size: 2,103 Bytes
d7b8d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f753320
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Define the schema for the database
db_schema = {
    "products": ["product_id", "name", "price", "description", "type"],
    "orders": ["order_id", "product_id", "quantity", "order_date"],
    "customers": ["customer_id", "name", "email", "phone_number"]
}

# Load the model and tokenizer
model_name = "EleutherAI/gpt-neox-20b"  # You can also use "Llama-2-7b" or another model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)

def generate_sql_query(context, question):
    """
    Generate an SQL query based on the question and context.

    Args:
        context (str): Description of the database schema or table relationships.
        question (str): User's natural language query.

    Returns:
        str: Generated SQL query.
    """
    # Prepare the prompt
    prompt = f"""
    Context: {context}

    Question: {question}

    Write an SQL query to address the question based on the context.
    Query:
    """
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda" if torch.cuda.is_available() else "cpu")

    # Generate SQL query
    output = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
    query = tokenizer.decode(output[0], skip_special_tokens=True)

    # Extract query from the output
    sql_query = query.split("Query:")[-1].strip()
    return sql_query

# Schema as a context for the model
schema_description = json.dumps(db_schema, indent=4)

# # Example interactive questions
# print("Ask a question about the database schema.")
# while True:
#     user_question = input("Question: ")
#     if user_question.lower() in ["exit", "quit"]:
#         print("Exiting...")
#         break

user_question = 'Show all products that cost more than $50'

# Generate SQL query
sql_query = generate_sql_query(schema_description, user_question)
print(f"Generated SQL Query:\n{sql_query}\n")