File size: 9,220 Bytes
e6f4fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import sqlite3
import spacy
import re
from thefuzz import process
import numpy as np
from transformers import pipeline

# Load intent classification model
# Use Hugging Face's zero-shot pipeline for flexibility
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
nlp = spacy.load("en_core_web_sm")
nlp_vectors = spacy.load("en_core_web_md")


# Define operator mappings
operator_mappings = {
    "greater than": ">",
    "less than": "<",
    "equal to": "=",
    "not equal to": "!=",
    "starts with": "LIKE",
    "ends with": "LIKE",
    "contains": "LIKE",
    "above": ">",
    "below": "<",
    "more than": ">",
    "less than": "<",
    "<": "<",
    ">": ">"
}

# Connect to SQLite database
def connect_to_db(db_path):
    conn = sqlite3.connect(db_path)
    return conn

# Fetch database schema
def fetch_schema(conn):
    cursor = conn.cursor()
    query = """
    SELECT name 
    FROM sqlite_master 
    WHERE type='table';
    """
    cursor.execute(query)
    tables = cursor.fetchall()

    schema = {}
    for table in tables:
        table_name = table[0]
        cursor.execute(f"PRAGMA table_info({table_name});")
        columns = cursor.fetchall()
        schema[table_name] = [{"name": col[1], "type": col[2], "not_null": col[3], "default": col[4], "pk": col[5]} for col in columns]

    return schema

def find_ai_synonym(token_text, table_schema):
    """Return the best-matching column from table_schema based on vector similarity."""
    token_vec = nlp_vectors(token_text)[0].vector
    best_col = None
    best_score = 0.0

    for col in table_schema:
        col_vec = nlp_vectors(col)[0].vector
        # Cosine similarity
        score = token_vec.dot(col_vec) / (np.linalg.norm(token_vec) * np.linalg.norm(col_vec))
        if score > best_score:
            best_score = score
            best_col = col

    # Apply threshold
    if best_score > 0.65:
        return best_col
    return None

def identify_table(question, schema_tables):
    # schema_tables = ["products", "users", "orders", ...]
    table, score = process.extractOne(question, schema_tables)

    if score > 80:  # a comfortable threshold
        return table
    return None

def identify_columns(question, columns_for_table):
    # columns_for_table = ["id", "price", "stock", "name", ...]
    # For each token in question, fuzzy match to columns
    matched_cols = []
    tokens = question.lower().split()
    for token in tokens:
        col, score = process.extractOne(token, columns_for_table)
        if score > 80:
            matched_cols.append(col)
    return matched_cols

def find_closest_column(token, table_schema):
    # table_schema is a list of column names, e.g. ["price", "stock", "name"]
    # This returns (best_match, score)
    best_match, score = process.extractOne(token, table_schema)
    # You can tune this threshold as needed (e.g. 70, 80, etc.)
    if score > 90:
        return best_match
    return None

# Condition extraction with NLP
def extract_conditions(question, schema, table):
    table_schema = [col["name"].lower() for col in schema.get(table, [])]

    # Detect whether the user used 'AND' / 'OR'
    # (case-insensitive, hence .lower() checks)
    use_and = " and " in question.lower()
    use_or = " or " in question.lower()
    last_column = None

    # Split on 'and' or 'or' to handle multiple conditions
    condition_parts = re.split(r'\band\b|\bor\b', question, flags=re.IGNORECASE)

    print(condition_parts)

    conditions = []
    
    for part in condition_parts:
        part = part.strip()
        
        # Use spaCy to tokenize each part
        doc = nlp(part.lower())
        tokens = [token.text for token in doc]

        # Skip the recognized_table token if it appears in tokens
        # so it won't be matched as a column
        tokens = [t for t in tokens if t != table.lower()]

        part_conditions = []
        current_part_column = None

        print(tokens)

        for i, token in enumerate(tokens):
            # Try synonyms/fuzzy, etc. to find a column
            possible_col = find_ai_synonym(token, table_schema)
            if possible_col:
                current_part_column = possible_col
                last_column = possible_col  # update last_column

        # Check for any matching operator phrase in this part
        for phrase, sql_operator in operator_mappings.items():
            if phrase in part.lower():
                # Extract the value after the phrase
                value_index = part.lower().find(phrase) + len(phrase)
                value = part[value_index:].strip().split(" ")[0]
                value = value.replace("'", "").replace('"', "").strip()

                # Special handling for LIKE operators
                if sql_operator == "LIKE":
                    if "starts with" in phrase:
                        value = f"'{value}%'"
                    elif "ends with" in phrase:
                        value = f"'%{value}'"
                    elif "contains" in phrase:
                        value = f"'%{value}%'"

                # If we did not find a new column, fallback to last_column
                column_to_use = current_part_column or last_column
                if column_to_use:
                    # Add this condition to the list for this part
                    part_conditions.append(f"{column_to_use} {sql_operator} {value}")

        # If multiple conditions are found in this part, join them with AND
        # (e.g., "price > 100 AND stock < 50" within the same part)
        if part_conditions:
            conditions.append(" AND ".join(part_conditions))

    # Finally, combine each part with AND or OR, depending on the user query
    if use_and:
        return " AND ".join(conditions)
    elif use_or:
        return " OR ".join(conditions)
    else:
        # If there's only one part or no explicit 'and'/'or', default to AND
        return " AND ".join(conditions)

# Interpret user question using intent recognition
def interpret_question(question, schema):
    # Define potential intents
    intents = {
        "describe_table": "Provide information about the columns and structure of a table.",
        "list_table_data": "Fetch and display all data stored in a table.",
        "count_records": "Count the number of records in a table.",
        "fetch_column": "Fetch a specific column's data from a table."
    }
    
    # Use classifier to predict intent
    labels = list(intents.keys())
    result = classifier(question, labels)
    
    predicted_intent = result["labels"][0]
    table = identify_table(question, list(schema.keys()))
    
    # Rule-based fallback for conditional queries
    condition_keywords = list(operator_mappings.keys())
    if any(keyword in question.lower() for keyword in condition_keywords):
        predicted_intent = "list_table_data"

    return {"intent": predicted_intent, "table": table}

# Handle different intents
def handle_intent(intent_data, schema, conn, question):
    intent = intent_data["intent"]
    table = intent_data["table"]

    if not table:
        return "I couldn't identify which table you're referring to."

    if intent == "describe_table":
        # Describe table structure
        table_schema = schema[table]
        description = [f"Table '{table}' has the following columns:"]
        for col in table_schema:
            col_details = f"- {col['name']} ({col['type']})"
            if col['not_null']:
                col_details += " [NOT NULL]"
            if col['default'] is not None:
                col_details += f" [DEFAULT: {col['default']}]"
            if col['pk']:
                col_details += " [PRIMARY KEY]"
            description.append(col_details)
        return "\n".join(description)

    elif intent == "list_table_data":
        # Check for conditions
        condition = extract_conditions(question, schema, table)
        cursor = conn.cursor()
        query = f"SELECT * FROM {table}"
        if condition:
            query += f" WHERE {condition};"
        else:
            query += ";"
        
        print(query)
        cursor.execute(query)
        return cursor.fetchall()

    elif intent == "count_records":
        # Count records in the table
        cursor = conn.cursor()
        cursor.execute(f"SELECT COUNT(*) FROM {table};")
        return cursor.fetchone()

    elif intent == "fetch_column":
        return "Fetching specific column data is not yet implemented."

    else:
        return "I couldn't understand your question."

# Main function
def answer_question(question, conn, schema):
    intent_data = interpret_question(question, schema)
    print(intent_data)
    return handle_intent(intent_data, schema, conn, question)

# Example Usage
if __name__ == "__main__":
    db_path = "./ecommerce.db"  # Replace with your SQLite database path
    conn = connect_to_db(db_path)
    schema = fetch_schema(conn)

    print("Schema:", schema)

    while True:
        question = input("\nAsk a question about the database: ")
        if question.lower() in ["exit", "quit"]:
            break

        answer = answer_question(question, conn, schema)
        print("Answer:", answer)