File size: 5,007 Bytes
9aaed9a
 
 
 
 
 
 
 
 
fd36ba3
9aaed9a
 
 
 
 
 
 
 
 
fd36ba3
9aaed9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd36ba3
9aaed9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import pandas as pd
import numpy as np
from datetime import datetime
import streamlit as st
import matplotlib.pyplot as plt
import plotly.express as px
#import plotly.graph_objects as go

def preprocess(stocks,choices):
    symbols, weights, investing_style, benchmark, rf, A_coef = choices.values()
    stocks = stocks.pivot(index="Date", columns="Ticker", values="Adj. Close")
    print('stocks',stocks)
    logRet = np.log(stocks/stocks.shift())
    log_returns = np.log(stocks/stocks.shift())
    tickers_list = symbols.copy()
    weights_list = weights.copy()
    return logRet,tickers_list,weights_list

def cumulative_return(stocks,choices):
    symbols, weights, investing_style, benchmark, rf, A_coef = choices.values()
    logRet,tickers_list,weights_list = preprocess(stocks,choices)
    tkers = sorted(set(stocks['Ticker'].unique()))

    stocks = stocks.pivot(index="Date", columns="Ticker", values="Adj. Close")
    
    stock_port = {}
    for e in tickers_list: stock_port[e] = 0
    # Convert Weights to Floats and Sum
    weights = [float(x) for x in weights_list]
    s = sum(weights)
    # Calc Weight Proportions
    new_weights = []
    for i in weights: new_weights.append(i/s)
    # Assign Weights to Ticker Dict
    i = 0
    for e in stock_port:
        stock_port[e] = new_weights[i]
        i += 1
    
    port = dict.fromkeys(tkers, 0)
    port.update(stock_port)
    
    portfolio_dict = port
    
    for e in portfolio_dict:
        tmp = 0
        if portfolio_dict[e] > tmp:
            tmp = portfolio_dict[e]
            tick = e
    list_ =[]        
    for e in tickers_list:
        if e not in list_:
            list_.append(e)

    df = stocks[list_]
    df = df/df.iloc[0]
    df.reset_index(inplace=True)
    df=pd.DataFrame(df)
    print(df)
    fig = px.line(df, x='Date' ,y=df.columns[1:,])
    
    
    #layout reference = https://linuxtut.com/en/b13e3e721519c2842cc9/
    fig.update_layout(
        xaxis=dict(
        rangeselector=dict(
                buttons=list([
                    dict(count=1,
                         label="1m",
                         step="month",
                         stepmode="backward"),
                    dict(count=6,
                         label="6m",
                         step="month",
                         stepmode="backward"),
                    dict(count=1,
                         label="YTD",
                         step="year",
                         stepmode="todate"),
                    dict(count=1,
                         label="1y",
                         step="year",
                         stepmode="backward"),
                    dict(step="all")
                ])
            ),
            rangeslider=dict(
                visible=True
            ),
            type="date"
        )
    )
    fig.update_layout(xaxis=dict(rangeselector = dict(font = dict( color = "black"))))
    st.subheader('Portfolio Historical Normalized Cumulative Returns')

    st.plotly_chart(fig, use_container_width=True)
    
def sharp_ratio_func(stocks,choices):
    symbols, weights, investing_style, benchmark, rf, A_coef = choices.values()
    logRet,tickers_list,weights_list = preprocess(stocks,choices)
    tkers = sorted(set(stocks['Ticker'].unique()))

    stocks = stocks.pivot(index="Date", columns="Ticker", values="Adj. Close")
        
    stock_port = {}
    for e in tickers_list: stock_port[e] = 0
    # Convert Weights to Floats and Sum    
    weights = [float(x) for x in weights_list]
    s = sum(weights)
    # Calc Weight Proportions
    new_weights = []
    for i in weights: new_weights.append(i/s)
    # Assign Weights to Ticker Dict
    i = 0
    for e in stock_port:
        stock_port[e] = new_weights[i]
        i += 1
        
    port = dict.fromkeys(tkers, 0)
    port.update(stock_port)
        
    portfolio_dict = port
            
    sharp_ratio_list = []
    for ticker in symbols:
        logRet = np.log(stocks/stocks.shift())
        stk = dict.fromkeys(tkers, 0)
        stkTicker = {ticker:1}
        stk.update(stkTicker)
        ttlStk = np.sum(logRet*stk, axis=1)
        stock_sharpe_ratio = ttlStk.mean() / ttlStk.std()
        sharp_ratio_list.append(stock_sharpe_ratio)
            
    sharp_ratio = {'Assets': symbols, 'Sharpe Ratio': sharp_ratio_list}
        
        # Portfolio sharp Ratio Calculation
    logRet = np.log(stocks/stocks.shift())
    portfolio = dict.fromkeys(tkers, 0)
    portfolio.update(portfolio_dict)
    totalPortfolio = np.sum(logRet*portfolio, axis=1)
    portfolio_sharpe_ratio = totalPortfolio.mean() / totalPortfolio.std()
        
    sharp_ratio['Assets'].append('Portfolio')
    sharp_ratio['Sharpe Ratio'].append(portfolio_sharpe_ratio)
    
    fig = px.bar(sharp_ratio, x='Assets', y="Sharpe Ratio",color='Assets') 
    fig.update_layout(title_text = 'Sharpe Ratio of the Assets and Portfolio',
                        title_x=0.458)
    st.plotly_chart(fig, use_container_width=True)