File size: 8,276 Bytes
f2bfb78 f9c3c03 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 9004315 5b5632a f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 f2bfb78 fc101f7 5b5632a f2bfb78 5b5632a f2bfb78 5b5632a f2bfb78 f2ecd11 f2bfb78 f2ecd11 f2bfb78 5b5632a f2bfb78 5b5632a f2bfb78 5b5632a 392668a 5b5632a f2bfb78 208a029 f2bfb78 5b5632a 9004315 5b5632a f2bfb78 5b5632a f2bfb78 208a029 f2bfb78 5b5632a f2bfb78 392668a f2bfb78 e1b5103 fe1b531 e1b5103 fc101f7 e1b5103 fc101f7 e1b5103 fc101f7 e1b5103 fc101f7 e1b5103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import pandas as pd
import seaborn as sns
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
import altair as alt
import plotly.express as px
def beta(stock_df, choices):
symbols, weights, benchmark, investing_style, rf, A_coef = choices.values()
tickers = symbols
tickers.append(benchmark)
#print(tickers)
quantity = weights
selected_stocks = stock_df[tickers]
# calculating daily return
# loops through each stocks
# loops through each row belonging to the stock
# calculates the percentage change from previous day
# sets the value of first row to zero since there is no previous value
df_stocks = selected_stocks.copy()
for i in selected_stocks.columns[1:]:
for j in range(1, len(selected_stocks)):
df_stocks[i][j] = ((selected_stocks[i][j] - selected_stocks[i][j - 1]) / selected_stocks[i][j - 1]) * 100
df_stocks[i][0] = 0
# calculate Beta and alpha for a single stock
# used sp500 as a benchmark
# used polyfit to calculate beta
beta_list = []
alpha_list = []
stocks_daily_return = df_stocks
for i in stocks_daily_return.columns:
if i != 'Date' and i != benchmark:
# stocks_daily_return.plot(kind = 'scatter', x = 'A', y = i)
b, a = np.polyfit(stocks_daily_return[benchmark], stocks_daily_return[i], 1)
# plt.plot(stocks_daily_return['sp500'], b * stocks_daily_return['sp500'] + a, '-', color = 'r')
beta_list.append(round(b, 2))
alpha_list.append(round(a, 2))
# plt.show()
# Formats the results
symbols.remove(benchmark)
beta = {'Assets': symbols, 'Beta': beta_list}
alpha = {'Assets': symbols, 'Alpha': alpha_list}
# Creates a header for streamlit
st.subheader('Beta and Alpha of Assets Compared to S&P500 index')
col1, col2 = st.columns(2)
with col1:
st.dataframe(beta)
with col2:
st.dataframe(alpha)
def ER(stock_df, choices):
symbols, weights, benchmark, investing_style, rf, A_coef = choices.values()
symbols_ =symbols.copy()
tickers = symbols
tickers.append(benchmark)
#print(tickers)
quantity = weights
selected_stocks = stock_df[tickers]
# calculating daily return
# loops through each stocks
# loops through each row belonging to the stock
# calculates the percentage change from previous day
# sets the value of first row to zero since there is no previous value
df_stocks = selected_stocks.copy()
for i in selected_stocks.columns[1:]:
for j in range(1, len(selected_stocks)):
df_stocks[i][j] = ((selected_stocks[i][j] - selected_stocks[i][j - 1]) / selected_stocks[i][j - 1]) * 100
df_stocks[i][0] = 0
beta = {}
alpha = {}
stocks_daily_return = df_stocks
# print(df_stocks)
for i in stocks_daily_return.columns:
if i != 'Date' and i != benchmark:
# stocks_daily_return.plot(kind = 'scatter', x = 'A', y = i)
b, a = np.polyfit(stocks_daily_return[benchmark], stocks_daily_return[i], 1)
# plt.plot(stocks_daily_return['sp500'], b * stocks_daily_return['sp500'] + a, '-', color = 'r')
beta[i] = round(b, 2)
alpha[i] = round(a, 2)
# plt.show()
# calculating camp for a stock
keys = list(beta.keys())
ER_ = []
# rf = 0 assuming risk-free rate of 0
rf = 0
# rm - annualize retun
rm = stocks_daily_return[benchmark].mean() * 252
for i in keys:
ER_.append( round(rf + (beta[i] * (rm - rf)), 2))
#for i in keys:
# print('Expected Return based on CAPM for {} is {}%'.format(i, ER_[i]))
#print(ER)
symbols.remove(benchmark)
#st.subheader('Expected Annual Return Based on CAPM Model')
Expected_return = {'Assets': symbols_, 'Expected Annual Return': ER_}
# Creates a header for streamlit
#st.dataframe(Expected_return)
# calculate expected return for the portfolio
# portfolio weights assume equal
portfolio_weights = []
current_cash_value = 0
total_portfolio_value = 0
cash_value_stocks =[]
for i in range(len(tickers) ):
stocks_name = tickers[i]
current_cash_value = selected_stocks[stocks_name].iloc[-1]
stocks_quantity = quantity[i]
cash_value = stocks_quantity * current_cash_value
cash_value_stocks.append(cash_value)
total_portfolio_value += cash_value
portfolio_weights.append(cash_value)
#print(portfolio_weights)
portfolio_weights = (portfolio_weights / total_portfolio_value)*100
ER_portfolio= []
ER_portfolio = sum(list(ER_) * portfolio_weights)/100
#print(ER_portfolio)
#st.subheader('Expected Portfolio Return Based on CAPM Model')
# Creates a header for streamlit
#st.write('Expected Portfolio Return is:', ER_portfolio)
Bar_output = Expected_return.copy()
Bar_output['Assets'].append('Portfolio')
Bar_output['Expected Annual Return'].append(ER_portfolio)
fig = px.bar(Bar_output, x='Assets', y="Expected Annual Return",color='Assets')
#fig.update_layout(title_text = 'Annual Expected Return of the Assets and Portfolio',title_x=0.458)
st.subheader('Annual Expected Return of the Assets and Portfolio')
st.plotly_chart(fig, use_container_width=True)
return beta, cash_value_stocks
def basic_portfolio(stock_df):
"""Uses the stock dataframe to graph the normalized historical cumulative returns of each asset.
"""
# Calculates the daily returns of the inputted dataframe
daily_return = stock_df.dropna().pct_change()
# Calculates the cumulative return of the previously calculated daily return
cumulative_return = (1 + daily_return).cumprod()
# Graphs the cumulative returns
st.line_chart(cumulative_return)
def display_heat_map(stock_df,choices):
symbols, weights, benchmark, investing_style, rf, A_coef = choices.values()
selected_stocks = stock_df[symbols]
# Calcuilates the correlation of the assets in the portfolio
price_correlation = selected_stocks.corr()
# Generates a figure for the heatmap
fig, ax = plt.subplots()
fig = px.imshow(price_correlation,text_auto=True, aspect="auto")
# Displays the heatmap on streamlit
st.write(fig)
#def display_portfolio_return(stock_df, choices):
"""Uses the stock dataframe and the chosen weights from choices to calculate and graph the historical cumulative portfolio return.
"""
# symbols, weights, investment = choices.values()
# Calculates the daily percentage returns of the
# daily_returns = stock_df.pct_change().dropna()
# Applies the weights of each asset to the portfolio
# portfolio_returns = daily_returns.dot(weights)
# Calculates the cumulative weighted portfolio return
# cumulative_returns = (1 + portfolio_returns).cumprod()
# Calculates the cumulative profit using the cumulative portfolio return
# cumulative_profit = investment * cumulative_returns
# Graphs the result, and displays it with a header on streamlit
# st.subheader('Portfolio Historical Cumulative Returns Based On Inputs!')
# st.line_chart(cumulative_profit)
def buble_interactive(stock_df,choices):
symbols, weights, benchmark, investing_style, rf, A_coef = choices.values()
beta,cash_value_weights = ER(stock_df,choices)
my_list = []
my_colors = []
for i in beta.values():
my_list.append(i)
if i < 0.3:
my_colors.append("Conservative")
if i >= 0.3 and i <= 1.1:
my_colors.append("Moderate Risk")
if i > 1.1:
my_colors.append("Risky")
df_final =pd.DataFrame()
df_final['ticker'] = symbols
df_final['quantities'] = weights
df_final['cash_value'] =cash_value_weights
df_final['Beta'] = my_list
df_final['Risk'] = my_colors
fig = px.scatter(
df_final,
x="quantities",
y="Beta",
size="cash_value",
color="Risk",
hover_name="ticker",
log_x=True,
size_max=60,
)
fig.update_layout(title="Beta ----write something")
# -- Input the Plotly chart to the Streamlit interface
st.plotly_chart(fig, use_container_width=True) |