File size: 13,758 Bytes
45d0933 9525dec 45d0933 7e996cc 45d0933 7e996cc 45d0933 7e996cc adb4a34 7e996cc adb4a34 7e996cc adb4a34 7e996cc 45d0933 7e996cc 45d0933 7e996cc 45d0933 7e996cc 45d0933 7e996cc 45d0933 7e996cc 45d0933 7e996cc 45d0933 adb4a34 7e996cc adb4a34 7e996cc adb4a34 7e996cc adb4a34 7e996cc 45d0933 7e996cc 9525dec 7e996cc 9525dec 7e996cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import os
import umap
import streamlit as st
@st.cache_data
def load_data(file_path):
return pd.read_csv(file_path, sep='\t')
class Plot:
def __init__(self, data_file='data/feature_matrix.tsv', metadata_file='data/indicator_cause_sentence_metadata.tsv'):
self.data_file = data_file
self.metadata_file = metadata_file
self.df = load_data(self.data_file) # Cached data loading
self.metadata_df = load_data(self.metadata_file)
# Cache and compute necessary columns once
self.indicator_columns = [col for col in self.df.columns if col.startswith('indicator_')]
self.cause_columns = [col for col in self.df.columns if col.startswith('cause_')]
self.df['Year'] = self.df['text_date'].astype(str).str[:4]
self.df['Has_Indicator'] = self.df[self.indicator_columns].sum(axis=1) > 0
# Precompute totals for faster use in chart functions
self.total_sentences_per_year = self.df.groupby(['Year', 'subfolder']).size().reset_index(name='Total Sentences')
self.total_sentences_per_subfolder = self.df.groupby('subfolder').size().reset_index(name='Total Sentences')
def get_indicator_chart(self, chart_type='total', individual_threshold=5):
if chart_type == 'total':
# Summarize indicator share per subfolder
indicator_counts = self.df[self.df['Has_Indicator']].groupby('subfolder').size().reset_index(name='Indicator Count')
total_counts = indicator_counts.merge(self.total_sentences_per_subfolder, on='subfolder')
total_counts['Indicator_Share'] = total_counts['Indicator Count'] / total_counts['Total Sentences']
total_counts['Indicator_Share_Text'] = (total_counts['Indicator_Share'] * 100).round(2).astype(str) + '%'
fig = px.bar(
total_counts,
x='subfolder',
y='Indicator_Share',
labels={'Indicator_Share': 'Share of Sentences with Indicators', 'subfolder': ''},
color='subfolder',
text='Indicator_Share_Text',
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_traces(
textposition='inside',
insidetextanchor='middle',
texttemplate='%{text}',
textfont=dict(color='rgb(255, 255, 255)')
)
elif chart_type == 'individual':
# Melt the dataframe to long format
df_melted = self.df.melt(id_vars=['subfolder'], value_vars=self.indicator_columns, var_name='Indicator', value_name='Count')
df_melted = df_melted[df_melted['Count'] > 0]
# Group by Indicator only to calculate total counts across all subfolders
total_indicator_counts = df_melted.groupby('Indicator').size().reset_index(name='Total Count')
indicators_meeting_threshold = total_indicator_counts[total_indicator_counts['Total Count'] >= individual_threshold]['Indicator'].unique()
# Filter df_melted to include only indicators that meet the threshold overall
df_melted = df_melted[df_melted['Indicator'].isin(indicators_meeting_threshold)]
df_melted['Indicator'] = df_melted['Indicator'].str.replace('indicator_', '').str.capitalize()
# Re-aggregate counts by subfolder and indicator for the filtered indicators
df_melted = df_melted.groupby(['subfolder', 'Indicator']).size().reset_index(name='Count')
# Create the bar chart
fig = px.bar(
df_melted,
x='subfolder',
y='Count',
color='Indicator',
barmode='group',
labels={'Count': 'Occurrences', 'subfolder': '', 'Indicator': 'Indicator'},
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
insidetextanchor='middle',
textfont=dict(color='rgb(255, 255, 255)')
)
elif chart_type == 'year':
indicator_counts_per_year = self.df[self.df['Has_Indicator']].groupby(['Year', 'subfolder']).size().reset_index(name='Indicator Count')
df_summary = pd.merge(self.total_sentences_per_year, indicator_counts_per_year, on=['Year', 'subfolder'], how='left')
df_summary['Indicator_Share_Text'] = (df_summary['Indicator Count'] / df_summary['Total Sentences'] * 100).round(2).astype(str) + '%'
fig = px.bar(
df_summary,
x='Year',
y='Total Sentences',
color='subfolder',
labels={'Total Sentences': 'Total Number of Sentences', 'Year': 'Year'},
text='Indicator_Share_Text',
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_traces(
textposition='inside',
texttemplate='%{text}',
insidetextanchor='middle',
textfont=dict(color='rgb(255, 255, 255)')
)
fig.update_layout(
xaxis=dict(showline=True),
yaxis=dict(title='Indicator Sentences' if chart_type != 'year' else 'Total Sentences'),
bargap=0.05,
showlegend=(chart_type != 'total')
)
return fig
def get_causes_chart(self, min_value=30):
df_filtered = self.metadata_df[self.metadata_df['cause'] != 'N/A']
causes_meeting_threshold = df_filtered.groupby('cause')['cause'].count()[lambda x: x >= min_value].index
df_filtered = df_filtered[df_filtered['cause'].isin(causes_meeting_threshold)]
df_filtered['cause'] = df_filtered['cause'].str.capitalize()
fig = px.bar(
df_filtered.groupby(['subfolder', 'cause']).size().reset_index(name='Count'),
x='subfolder',
y='Count',
color='cause',
barmode='group',
labels={'Count': 'Occurrences', 'subfolder': '', 'cause': 'Cause'},
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_layout(xaxis=dict(showline=True), yaxis=dict(showticklabels=True, title=''))
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
insidetextanchor='middle',
textfont=dict(color='rgb(255, 255, 255)')
)
return fig
def scatter(self, include_modality=False):
# Use self.df to avoid reloading data
df_filtered = self.df[(self.df[self.indicator_columns].sum(axis=1) > 0) |
(self.df[self.cause_columns].sum(axis=1) > 0)]
# Exclude specific indicators and filter based on count threshold
indicator_columns = [col for col in self.indicator_columns if 'indicator_!besprechen' not in col]
indicator_counts = df_filtered[indicator_columns].sum()
indicators_to_keep = indicator_counts[indicator_counts >= 10].index.tolist()
df_filtered = df_filtered[df_filtered[indicators_to_keep].sum(axis=1) > 0]
# Exclude non-feature columns for dimensionality reduction
columns_to_drop = ['subfolder', 'text_id', 'sentence_id', 'text_date', 'text_source', 'text_text_type']
if not include_modality:
columns_to_drop += [col for col in self.df.columns if col.startswith('modality_')]
features = df_filtered.drop(columns=columns_to_drop, errors='ignore').select_dtypes(include=[float, int])
features_clean = features.fillna(0)
# Prepare metadata for plotting
metadata = df_filtered[['subfolder']].copy()
metadata['indicator'] = df_filtered[indicators_to_keep].apply(
lambda row: ', '.join([indicator.replace('indicator_', '') for indicator in indicators_to_keep if row[indicator] > 0]),
axis=1
)
metadata['cause'] = df_filtered[self.cause_columns].apply(
lambda row: ', '.join([cause.replace('cause_', '') for cause in self.cause_columns if row[cause] > 0]),
axis=1
)
# Perform UMAP dimensionality reduction
reducer = umap.UMAP(n_components=2, random_state=42, n_neighbors=50, n_jobs=1, metric='cosine')
reduced_features = reducer.fit_transform(features_clean)
df_reduced = pd.DataFrame(reduced_features, columns=['UMAP x', 'UMAP y'])
df_reduced = pd.concat([df_reduced, metadata.reset_index(drop=True)], axis=1)
# Plotting the scatter plot
hover_data = {'cause': True, 'UMAP x': False, 'UMAP y': False}
if include_modality:
hover_data['Modality'] = True
fig = px.scatter(
df_reduced,
x='UMAP x',
y='UMAP y',
color='subfolder',
symbol='indicator',
labels={'subfolder': 'Effect'},
hover_data=hover_data,
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_layout(
xaxis=dict(showgrid=True),
yaxis=dict(showgrid=True),
showlegend=True,
legend=dict(title="Effect, Indicator", yanchor="top", xanchor="left", borderwidth=1),
)
return fig
def sankey(self, cause_threshold=10, indicator_threshold=5, link_opacity=0.4):
# Use self.df to avoid reloading data
df_filtered = self.df[(self.df[self.cause_columns].sum(axis=1) > 0) &
(self.df[self.indicator_columns].sum(axis=1) > 0)]
# Melt causes and indicators separately, ensuring unique sentence IDs
cause_data = df_filtered[['text_id', 'subfolder'] + self.cause_columns].melt(
id_vars=['text_id', 'subfolder'], var_name='cause', value_name='count'
).query("count > 0").drop_duplicates(['text_id', 'cause'])
indicator_data = df_filtered[['text_id', 'subfolder'] + self.indicator_columns].melt(
id_vars=['text_id', 'subfolder'], var_name='indicator', value_name='count'
).query("count > 0").drop_duplicates(['text_id', 'indicator'])
# Apply threshold filters
valid_causes = cause_data['cause'].value_counts()[lambda x: x >= cause_threshold].index
valid_indicators = indicator_data['indicator'].value_counts()[lambda x: x >= indicator_threshold].index
cause_data = cause_data[cause_data['cause'].isin(valid_causes)]
indicator_data = indicator_data[indicator_data['indicator'].isin(valid_indicators)]
# Create unique cause-indicator-subfolder links by merging cause and indicator data on 'text_id' and 'subfolder'
cause_indicator_links = (
cause_data.merge(indicator_data, on=['text_id', 'subfolder'])
.groupby(['cause', 'indicator']).size().reset_index(name='count')
)
# Aggregate indicator-subfolder counts
indicator_subfolder_links = (
indicator_data.groupby(['indicator', 'subfolder']).size().reset_index(name='count')
)
# Define unique labels and their order
all_labels = list(valid_causes) + list(valid_indicators) + self.df['subfolder'].unique().tolist()
# Remove prefixes for cleaner labels
all_labels_cleaned = [label.replace("cause_", "").replace("indicator_", "") for label in all_labels]
label_to_index = {label: idx for idx, label in enumerate(all_labels)}
# Define a color palette from Plotly's D3 color sequence
color_palette = px.colors.qualitative.D3
node_colors = [color_palette[i % len(color_palette)] for i in range(len(all_labels))]
# Define sources, targets, values, and link colors with RGBA opacity
sources, targets, values, link_colors = [], [], [], []
def hex_to_rgba(hex_color, opacity):
return f'rgba({int(hex_color[1:3], 16)}, {int(hex_color[3:5], 16)}, {int(hex_color[5:], 16)}, {opacity})'
# Cause -> Indicator links
for _, row in cause_indicator_links.iterrows():
if row['cause'] in label_to_index and row['indicator'] in label_to_index:
source_idx = label_to_index[row['cause']]
target_idx = label_to_index[row['indicator']]
sources.append(source_idx)
targets.append(target_idx)
values.append(row['count'])
link_colors.append(hex_to_rgba(node_colors[source_idx], link_opacity))
# Indicator -> Subfolder links
for _, row in indicator_subfolder_links.iterrows():
if row['indicator'] in label_to_index and row['subfolder'] in label_to_index:
source_idx = label_to_index[row['indicator']]
target_idx = label_to_index[row['subfolder']]
sources.append(source_idx)
targets.append(target_idx)
values.append(row['count'])
link_colors.append(hex_to_rgba(node_colors[source_idx], link_opacity))
fig = go.Figure(data=[go.Sankey(
node=dict(
pad=15,
thickness=20,
line=dict(color="black", width=0.5),
label=all_labels_cleaned,
color=node_colors
),
link=dict(
source=sources,
target=targets,
value=values,
color=link_colors
)
)])
fig.update_layout(
autosize=False,
width=800,
height=600,
font=dict(size=10)
)
return fig
|