File size: 1,435 Bytes
46c0a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212623f
46c0a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff1d07
46c0a52
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
import torch
from torch import nn
from torchvision.transforms.functional import to_pil_image
import torchvision.utils as vutils



class Generator(nn.Module):
  def __init__(self, ngpu):
    super(Generator, self).__init__()
    self.ngpu = ngpu
    self.main = nn.Sequential(

        nn.ConvTranspose2d(128, 512, 4,1,0,bias=False),
        nn.BatchNorm2d(512),
        nn.ReLU(True),
        nn.ConvTranspose2d(512,256,4,2,1,bias=False),
        nn.BatchNorm2d(256),
        nn.ReLU(True),
        nn.ConvTranspose2d(256, 128,4,2,1,bias=False),
        nn.BatchNorm2d(128),
        nn.ReLU(True),
        nn.ConvTranspose2d(128, 64,4,2,1,bias=False),
        nn.BatchNorm2d(64),
        nn.ReLU(True),
        nn.ConvTranspose2d(64, 3, 4,2,1,bias=False),
        nn.Tanh()
    )

  def forward(self, x):
      return self.main(x)

model = Generator(ngpu=0)

model.load_state_dict(torch.load('car_gen.pth',map_location='cpu'))


def generate(button):

    model.eval()
    
    noise = torch.randn(32,128,1,1)


    with torch.inference_mode():
        images = []
        predictions = model(noise).detach().cpu()
        generated_grid = vutils.make_grid(predictions, nrow=8, padding=2, normalize=True)
    return to_pil_image(generated_grid)


Interface = gr.Interface(
   title='CarGAN',
   fn=generate,
   inputs=gr.Button(value='Generate',size='lg'),
   outputs=gr.Image(type='pil')
)




Interface.launch()