File size: 38,303 Bytes
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7be75
b99f63d
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
e9aca23
b99f63d
e9aca23
 
777cf03
e9aca23
b99f63d
 
 
 
 
 
 
777cf03
b99f63d
1f7c230
b99f63d
 
 
 
 
 
 
e9aca23
 
 
 
 
 
 
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
 
 
 
 
 
 
 
 
 
b99f63d
 
 
 
777cf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99f63d
 
 
 
 
 
 
 
e9aca23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777cf03
 
 
b99f63d
 
 
 
 
 
777cf03
b99f63d
 
 
 
 
 
 
 
 
 
777cf03
b99f63d
e9aca23
 
b99f63d
e9aca23
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
 
3e7be75
e9aca23
 
 
 
 
 
b99f63d
e9aca23
 
 
 
 
 
 
3e7be75
e9aca23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7be75
e9aca23
 
 
 
 
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
 
b99f63d
 
 
 
 
 
 
 
 
 
6441ccf
893487f
7c8bde4
b99f63d
 
7c8bde4
b99f63d
 
7c8bde4
b99f63d
 
7c8bde4
b99f63d
 
 
893487f
 
 
 
 
 
 
 
 
b99f63d
7c8bde4
893487f
7c8bde4
893487f
b99f63d
893487f
 
 
 
 
b99f63d
7c8bde4
b99f63d
7c8bde4
 
b99f63d
 
7c8bde4
b99f63d
 
 
 
 
 
 
7c8bde4
b99f63d
 
 
7c8bde4
b99f63d
 
 
 
 
7c8bde4
b99f63d
 
893487f
b99f63d
7c8bde4
b99f63d
 
 
 
893487f
 
 
 
 
 
 
 
 
b99f63d
7c8bde4
893487f
7c8bde4
893487f
b99f63d
893487f
 
 
b99f63d
893487f
b99f63d
7c8bde4
b99f63d
 
7c8bde4
b99f63d
7c8bde4
b99f63d
 
 
 
 
893487f
7c8bde4
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be61a7
 
 
b99f63d
2be61a7
 
 
 
b99f63d
2be61a7
b99f63d
e9aca23
2be61a7
b99f63d
e9aca23
b99f63d
e9aca23
3e7be75
e9aca23
2be61a7
b99f63d
 
 
 
 
 
2be61a7
b99f63d
 
2be61a7
 
b99f63d
e9aca23
2be61a7
3e7be75
 
2be61a7
e9aca23
 
 
2be61a7
b99f63d
e9aca23
2be61a7
e9aca23
 
3e7be75
e9aca23
b99f63d
2be61a7
 
 
 
 
 
 
 
 
 
e9aca23
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9aca23
 
 
 
 
 
 
 
 
 
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7c230
 
3e7be75
b99f63d
 
3e7be75
b99f63d
 
e9aca23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99f63d
1f7c230
b99f63d
1f7c230
b99f63d
777cf03
b99f63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7c230
b99f63d
 
 
 
 
 
 
 
 
 
 
 
1f7c230
b99f63d
3e7be75
 
 
e9aca23
 
 
 
 
 
 
 
 
b99f63d
1f7c230
b99f63d
1f7c230
 
 
b99f63d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
import os
import torch
import numpy as np
import uuid
import requests
import time
import json
from pydub import AudioSegment
import wave
from nemo.collections.asr.models import EncDecSpeakerLabelModel
from pinecone import Pinecone, ServerlessSpec
import librosa
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
import re
from typing import Dict, List, Tuple
import logging
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
import io
from transformers import AutoTokenizer, AutoModel
import spacy
import google.generativeai as genai
import joblib
from concurrent.futures import ThreadPoolExecutor
from reportlab.lib.enums import TA_CENTER
import subprocess
from contextlib import contextmanager
import tempfile
import multiprocessing

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.getLogger("nemo_logging").setLevel(logging.ERROR)
logging.getLogger("nemo").setLevel(logging.ERROR)

# Configuration
AUDIO_DIR = "./Uploads"
OUTPUT_DIR = "./processed_audio"
BASE_URL = "https://norhan12-evalbot-interview-analysis.hf.space"
os.makedirs(OUTPUT_DIR, exist_ok=True)

# API Keys
PINECONE_KEY = os.getenv("PINECONE_KEY")
ASSEMBLYAI_KEY = os.getenv("ASSEMBLYAI_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

# Validate environment variables
def validate_env_vars():
    required_keys = ['PINECONE_KEY', 'ASSEMBLYAI_KEY', 'GEMINI_API_KEY']
    missing = [key for key in required_keys if not os.getenv(key)]
    if missing:
        raise ValueError(f"Missing environment variables: {', '.join(missing)}")

validate_env_vars()

# Initialize services
def initialize_services():
    try:
        pc = Pinecone(api_key=PINECONE_KEY)
        index_name = "interview-speaker-embeddings"
        if index_name not in pc.list_indexes().names():
            pc.create_index(
                name=index_name,
                dimension=192,
                metric="cosine",
                spec=ServerlessSpec(cloud="aws", region="us-east-1")
            )
        index = pc.Index(index_name)
        genai.configure(api_key=GEMINI_API_KEY)
        gemini_model = genai.GenerativeModel('gemini-1.5-flash')
        return index, gemini_model
    except Exception as e:
        logger.error(f"Error initializing services: {str(e)}")
        raise

index, gemini_model = initialize_services()

# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")

def load_speaker_model():
    try:
        torch.set_num_threads(5)
        model = EncDecSpeakerLabelModel.from_pretrained(
            "nvidia/speakerverification_en_titanet_large",
            map_location=device
        )
        model.eval()
        return model
    except Exception as e:
        logger.error(f"Model loading failed: {str(e)}")
        raise RuntimeError("Could not load speaker verification model")

def load_models():
    speaker_model = load_speaker_model()
    nlp = spacy.load("en_core_web_sm")
    tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
    llm_model = AutoModel.from_pretrained("distilbert-base-uncased").to(device)
    llm_model.eval()
    return speaker_model, nlp, tokenizer, llm_model

speaker_model, nlp, tokenizer, llm_model = load_models()

@contextmanager
def temp_audio_file():
    temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
    try:
        yield temp_file.name
    finally:
        try:
            os.remove(temp_file.name)
        except OSError as e:
            logger.warning(f"Failed to delete temp file {temp_file.name}: {e}")

def convert_to_wav(input_path: str, output_dir: str = OUTPUT_DIR) -> str:
    try:
        os.makedirs(output_dir, exist_ok=True)
        temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
        output_path = temp_file.name
        command = [
            'ffmpeg', '-y',
            '-i', input_path,
            '-vn',
            '-acodec', 'pcm_s16le',
            '-ar', '16000',
            '-ac', '1',
            output_path
        ]
        subprocess.run(command, check=True, capture_output=True, text=True)
        if not os.path.exists(output_path):
            raise FileNotFoundError(f"FFmpeg failed to create WAV file: {output_path}")
        size_in_mb = os.path.getsize(output_path) / (1024*1024)
        logger.info(f"WAV file size: {size_in_mb:.2f} MB")
        return output_path
    except Exception as e:
        logger.error(f"Audio conversion failed: {str(e)}")
        raise

def extract_prosodic_features(audio_path: str, start_ms: int, end_ms: int) -> Dict:
    try:
        audio = AudioSegment.from_file(audio_path)
        segment = audio[start_ms:end_ms]
        with temp_audio_file() as temp_path:
            segment.export(temp_path, format="wav")
            y, sr = librosa.load(temp_path, sr=16000)
            pitches = librosa.piptrack(y=y, sr=sr)[0]
            pitches = pitches[pitches > 0]
            features = {
                'duration': (end_ms - start_ms) / 1000,
                'mean_pitch': float(np.mean(pitches)) if len(pitches) > 0 else 0.0,
                'min_pitch': float(np.min(pitches)) if len(pitches) > 0 else 0.0,
                'max_pitch': float(np.max(pitches)) if len(pitches) > 0 else 0.0,
                'pitch_sd': float(np.std(pitches)) if len(pitches) > 0 else 0.0,
                'intensityMean': float(np.mean(librosa.feature.rms(y=y)[0])),
                'intensityMin': float(np.min(librosa.feature.rms(y=y)[0])),
                'intensityMax': float(np.max(librosa.feature.rms(y=y)[0])),
                'intensitySD': float(np.std(librosa.feature.rms(y=y)[0])),
            }
            return features
    except Exception as e:
        logger.error(f"Feature extraction failed: {str(e)}")
        return {
            'duration': 0.0,
            'mean_pitch': 0.0,
            'min_pitch': 0.0,
            'max_pitch': 0.0,
            'pitch_sd': 0.0,
            'intensityMean': 0.0,
            'intensityMin': 0.0,
            'intensityMax': 0.0,
            'intensitySD': 0.0,
        }

def transcribe(audio_path: str) -> Dict:
    try:
        if not os.path.exists(audio_path):
            raise FileNotFoundError(f"Audio file not found: {audio_path}")
        logger.debug(f"Uploading audio file: {audio_path}")
        with open(audio_path, 'rb') as f:
            upload_response = requests.post(
                "https://api.assemblyai.com/v2/upload",
                headers={"authorization": ASSEMBLYAI_KEY},
                data=f
            )
        upload_response.raise_for_status()
        audio_url = upload_response.json()['upload_url']
        transcript_response = requests.post(
            "https://api.assemblyai.com/v2/transcript",
            headers={"authorization": ASSEMBLYAI_KEY},
            json={
                "audio_url": audio_url,
                "speaker_labels": True,
                "filter_profanity": True
            }
        )
        transcript_response.raise_for_status()
        transcript_id = transcript_response.json()['id']
        start_time = time.time()
        max_polling_time = 600  # 10 minutes
        while True:
            if time.time() - start_time > max_polling_time:
                raise TimeoutError("Transcription timed out after 10 minutes")
            result = requests.get(
                f"https://api.assemblyai.com/v2/transcript/{transcript_id}",
                headers={"authorization": ASSEMBLYAI_KEY}
            ).json()
            if result['status'] == 'completed':
                return result
            elif result['status'] == 'error':
                raise Exception(result['error'])
            time.sleep(5)
    except Exception as e:
        logger.error(f"Transcription failed: {str(e)}")
        raise

def process_utterance(utterance, full_audio, wav_file):
    try:
        start = utterance['start']
        end = utterance['end']
        duration_ms = end - start
        if duration_ms < 500:
            logger.warning(f"Skipping utterance with duration {duration_ms}ms (too short): '{utterance['text'][:20]}...'")
            return {
                **utterance,
                'speaker': 'Unknown',
                'speaker_id': 'unknown',
                'embedding': None
            }
        segment = full_audio[start:end]
        with temp_audio_file() as temp_path:
            segment.export(temp_path, format="wav")
            y, sr = librosa.load(temp_path, sr=16000)
            with torch.no_grad():
                embedding = speaker_model.get_embedding(temp_path).cpu().numpy()
            embedding_list = embedding.flatten().tolist()
            if not any(embedding_list):
                logger.warning(f"Invalid embedding for utterance: '{utterance['text'][:20]}...'")
                return {
                    **utterance,
                    'speaker': 'Unknown',
                    'speaker_id': 'unknown',
                    'embedding': None
                }
            query_result = index.query(
                vector=embedding_list,
                top_k=1,
                include_metadata=True
            )
            if query_result['matches'] and query_result['matches'][0]['score'] > 0.7:
                speaker_id = query_result['matches'][0]['id']
                speaker_name = query_result['matches'][0]['metadata']['speaker_name']
            else:
                speaker_id = f"unknown_{uuid.uuid4().hex[:6]}"
                speaker_name = f"Speaker_{speaker_id[-4:]}"
                index.upsert([(speaker_id, embedding_list, {"speaker_name": speaker_name})])
            logger.debug(f"Processed utterance: duration={duration_ms}ms, speaker={speaker_name}, text='{utterance['text'][:20]}...'")
            return {
                **utterance,
                'speaker': speaker_name,
                'speaker_id': speaker_id,
                'embedding': embedding_list
            }
    except Exception as e:
        logger.error(f"Utterance processing failed: {str(e)}", exc_info=True)
        return {
            **utterance,
            'speaker': 'Unknown',
            'speaker_id': 'unknown',
            'embedding': None
        }

def identify_speakers(transcript: Dict, wav_file: str) -> List[Dict]:
    try:
        full_audio = AudioSegment.from_wav(wav_file)
        utterances = transcript['utterances']
        max_workers = min(len(utterances), multiprocessing.cpu_count())
        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            futures = [
                executor.submit(process_utterance, utterance, full_audio, wav_file)
                for utterance in utterances
            ]
            results = [f.result() for f in futures]
        return results
    except Exception as e:
        logger.error(f"Speaker identification failed: {str(e)}")
        raise




def train_role_classifier(utterances: List[Dict]):
    try:
        texts = [u['text'] for u in utterances] # تم حذف الـ 'u' الزائدة
        vectorizer = TfidfVectorizer(max_features=500, ngram_range=(1, 2))
        X_text = vectorizer.fit_transform(texts)

        features = []
        labels = []

        for i, utterance in enumerate(utterances):
            prosodic = utterance['prosodic_features']
            feat = [
                prosodic['duration'],
                prosodic['mean_pitch'],
                prosodic['min_pitch'],
                prosodic['max_pitch'],
                prosodic['pitch_sd'],
                prosodic['intensityMean'],
                prosodic['intensityMin'],
                prosodic['intensityMax'],
                prosodic['intensitySD'],
            ]

            feat.extend(X_text[i].toarray()[0].tolist())

            doc = nlp(utterance['text'])
            feat.extend([
                int(utterance['text'].endswith('?')),
                len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
                len(utterance['text'].split()),
                sum(1 for token in doc if token.pos_ == 'VERB'),
                sum(1 for token in doc if token.pos_ == 'NOUN')
            ])

            features.append(feat)
            labels.append(0 if i % 2 == 0 else 1)

        scaler = StandardScaler()
        X = scaler.fit_transform(features)

        clf = RandomForestClassifier(
            n_estimators=150,
            max_depth=10,
            random_state=42,
            class_weight='balanced'
        )
        clf.fit(X, labels)

        joblib.dump(clf, os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
        joblib.dump(vectorizer, os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
        joblib.dump(scaler, os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))

        return clf, vectorizer, scaler
    except Exception as e:
        logger.error(f"Classifier training failed: {str(e)}")
        raise


def classify_roles(utterances: List[Dict], clf, vectorizer, scaler):
    try:
        texts = [u['text'] for u in utterances]
        X_text = vectorizer.transform(texts)

        results = []
        for i, utterance in enumerate(utterances):
            prosodic = utterance['prosodic_features']
            feat = [
                prosodic['duration'],
                prosodic['mean_pitch'],
                prosodic['min_pitch'],
                prosodic['max_pitch'],
                prosodic['pitch_sd'],
                prosodic['intensityMean'],
                prosodic['intensityMin'],
                prosodic['intensityMax'],
                prosodic['intensitySD'],
            ]

            feat.extend(X_text[i].toarray()[0].tolist())

            doc = nlp(utterance['text'])
            feat.extend([
                int(utterance['text'].endswith('?')),
                len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
                len(utterance['text'].split()),
                sum(1 for token in doc if token.pos_ == 'VERB'),
                sum(1 for token in doc if token.pos_ == 'NOUN')
            ])

            X = scaler.transform([feat])
            role = 'Interviewer' if clf.predict(X)[0] == 0 else 'Interviewee'

            results.append({**utterance, 'role': role})

        return results
    except Exception as e:
        logger.error(f"Role classification failed: {str(e)}")
        raise



def analyze_interviewee_voice(audio_path: str, utterances: List[Dict]) -> Dict:
    try:
        y, sr = librosa.load(audio_path, sr=16000)
        interviewee_utterances = [u for u in utterances if u['role'] == 'Interviewee']
        if not interviewee_utterances:
            return {'error': 'No interviewee utterances found'}
        segments = []
        for u in interviewee_utterances:
            start = int(u['start'] * sr / 1000)
            end = int(u['end'] * sr / 1000)
            segments.append(y[start:end])
        combined_audio = np.concatenate(segments)
        total_duration = sum(u['prosodic_features']['duration'] for u in interviewee_utterances)
        total_words = sum(len(u['text'].split()) for u in interviewee_utterances)
        speaking_rate = total_words / total_duration if total_duration > 0 else 0
        filler_words = ['um', 'uh', 'like', 'you know', 'so', 'i mean']
        filler_count = sum(
            sum(u['text'].lower().count(fw) for fw in filler_words)
            for u in interviewee_utterances
        )
        filler_ratio = filler_count / total_words if total_words > 0 else 0
        all_words = ' '.join(u['text'].lower() for u in interviewee_utterances).split()
        word_counts = {}
        for i in range(len(all_words) - 1):
            bigram = (all_words[i], all_words[i + 1])
            word_counts[bigram] = word_counts.get(bigram, 0) + 1
        repetition_score = sum(1 for count in word_counts.values() if count > 1) / len(word_counts) if word_counts else 0
        pitches = []
        for segment in segments:
            f0, voiced_flag, _ = librosa.pyin(segment, fmin=80, fmax=300, sr=sr)
            pitches.extend(f0[voiced_flag])
        pitch_mean = np.mean(pitches) if len(pitches) > 0 else 0
        pitch_std = np.std(pitches) if len(pitches) > 0 else 0
        jitter = np.mean(np.abs(np.diff(pitches))) / pitch_mean if len(pitches) > 1 and pitch_mean > 0 else 0
        intensities = []
        for segment in segments:
            rms = librosa.feature.rms(y=segment)[0]
            intensities.extend(rms)
        intensity_mean = np.mean(intensities) if intensities else 0
        intensity_std = np.std(intensities) if intensities else 0
        shimmer = np.mean(np.abs(np.diff(intensities))) / intensity_mean if len(intensities) > 1 and intensity_mean > 0 else 0
        anxiety_score = 0.6 * (pitch_std / pitch_mean) + 0.4 * (jitter + shimmer) if pitch_mean > 0 else 0
        confidence_score = 0.7 * (1 / (1 + intensity_std)) + 0.3 * (1 / (1 + filler_ratio))
        hesitation_score = filler_ratio + repetition_score
        anxiety_level = 'high' if anxiety_score > 0.15 else 'moderate' if anxiety_score > 0.07 else 'low'
        confidence_level = 'high' if confidence_score > 0.7 else 'moderate' if confidence_score > 0.5 else 'low'
        fluency_level = 'fluent' if (filler_ratio < 0.05 and repetition_score < 0.1) else 'moderate' if (
            filler_ratio < 0.1 and repetition_score < 0.2) else 'disfluent'
        return {
            'speaking_rate': float(round(speaking_rate, 2)),
            'filler_ratio': float(round(filler_ratio, 4)),
            'repetition_score': float(round(repetition_score, 4)),
            'pitch_analysis': {
                'mean': float(round(pitch_mean, 2)),
                'std_dev': float(round(pitch_std, 2)),
                'jitter': float(round(jitter, 4))
            },
            'intensity_analysis': {
                'mean': float(round(intensity_mean, 2)),
                'std_dev': float(round(intensity_std, 2)),
                'shimmer': float(round(shimmer, 4))
            },
            'composite_scores': {
                'anxiety': float(round(anxiety_score, 4)),
                'confidence': float(round(confidence_score, 4)),
                'hesitation': float(round(hesitation_score, 4))
            },
            'interpretation': {
                'anxiety_level': anxiety_level,
                'confidence_level': confidence_level,
                'fluency_level': fluency_level
            }
        }
    except Exception as e:
        logger.error(f"Voice analysis failed: {str(e)}")
        return {'error': str(e)}

def generate_voice_interpretation(analysis: Dict) -> str:
    if 'error' in analysis:
        return "Voice analysis not available."
    interpretation_lines = []
    interpretation_lines.append("Voice Analysis Summary:")
    interpretation_lines.append(f"- Speaking Rate: {analysis['speaking_rate']} words/sec (average)")
    interpretation_lines.append(f"- Filler Words: {analysis['filler_ratio'] * 100:.1f}% of words")
    interpretation_lines.append(f"- Repetition Score: {analysis['repetition_score']:.3f}")
    interpretation_lines.append(
        f"- Anxiety Level: {analysis['interpretation']['anxiety_level'].upper()} (score: {analysis['composite_scores']['anxiety']:.3f})")
    interpretation_lines.append(
        f"- Confidence Level: {analysis['interpretation']['confidence_level'].upper()} (score: {analysis['composite_scores']['confidence']:.3f})")
    interpretation_lines.append(f"- Fluency: {analysis['interpretation']['fluency_level'].upper()}")
    interpretation_lines.append("")
    interpretation_lines.append("Detailed Interpretation:")
    interpretation_lines.append("1. A higher speaking rate indicates faster speech, which can suggest nervousness or enthusiasm.")
    interpretation_lines.append("2. Filler words and repetitions reduce speech clarity and professionalism.")
    interpretation_lines.append("3. Anxiety is measured through pitch variability and voice instability.")
    interpretation_lines.append("4. Confidence is assessed through voice intensity and stability.")
    interpretation_lines.append("5. Fluency combines filler words and repetition metrics.")
    return "\n".join(interpretation_lines)

def generate_anxiety_confidence_chart(composite_scores: Dict, chart_path_or_buffer):
    try:
        labels = ['Anxiety', 'Confidence']
        scores = [composite_scores.get('anxiety', 0), composite_scores.get('confidence', 0)]
        fig, ax = plt.subplots(figsize=(5, 3))
        bars = ax.bar(labels, scores, color=['#FF6B6B', '#4ECDC4'], edgecolor='black', width=0.6)
        ax.set_ylabel('Score (Normalized)', fontsize=12)
        ax.set_title('Vocal Dynamics: Anxiety vs. Confidence', fontsize=14, pad=15)
        ax.set_ylim(0, 1.2)
        for bar in bars:
            height = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2, height + 0.05, f"{height:.2f}",
                    ha='center', color='black', fontweight='bold', fontsize=11)
        ax.grid(True, axis='y', linestyle='--', alpha=0.7)
        plt.tight_layout()
        plt.savefig(chart_path_or_buffer, format='png', bbox_inches='tight', dpi=200)
        plt.close(fig)
    except Exception as e:
        logger.error(f"Error generating chart: {str(e)}")

import re
from typing import Dict

def calculate_acceptance_probability(analysis_data: Dict) -> float:
    """
    Calculates an acceptance probability based on voice analysis and content strength.
    Combines multiple voice features and analyzes Gemini report text for strengths extraction.
    """
    voice = analysis_data.get('voice_analysis', {})
    # Handle error case early
    if 'error' in voice:
        return 0.0
    # Define weights
    w_confidence = 0.4
    w_anxiety = -0.3
    w_fluency = 0.2
    w_speaking_rate = 0.1
    w_filler_repetition = -0.1
    w_content_strengths = 0.2
    # Extract voice features
    confidence_score = voice.get('composite_scores', {}).get('confidence', 0.0)
    anxiety_score = voice.get('composite_scores', {}).get('anxiety', 0.0)
    fluency_level = voice.get('interpretation', {}).get('fluency_level', 'disfluent')
    speaking_rate = voice.get('speaking_rate', 0.0)
    filler_ratio = voice.get('filler_ratio', 0.0)
    repetition_score = voice.get('repetition_score', 0.0)
    # Map fluency level to numeric score
    fluency_map = {'fluent': 1.0, 'moderate': 0.5, 'disfluent': 0.0}
    fluency_val = fluency_map.get(fluency_level, 0.0)
    # Speaking rate scoring
    ideal_speaking_rate = 2.5  # words/sec
    speaking_rate_deviation = abs(speaking_rate - ideal_speaking_rate)
    speaking_rate_score = max(0, 1 - (speaking_rate_deviation / ideal_speaking_rate))
    # Filler and repetition combined score
    filler_repetition_composite = (filler_ratio + repetition_score) / 2
    filler_repetition_score = max(0, 1 - filler_repetition_composite)
    # Content strength extraction from Gemini report text
    gemini_report = analysis_data.get('gemini_report_text', '')
    strength_count = len(re.findall(r'Strengths?:', gemini_report, re.IGNORECASE))
    content_strength_val = min(1.0, strength_count / 5.0) if strength_count else 0.5
    # Calculate raw score
    raw_score = (
        confidence_score * w_confidence +
        (1 - anxiety_score) * abs(w_anxiety) +  # lower anxiety = better score
        fluency_val * w_fluency +
        speaking_rate_score * w_speaking_rate +
        filler_repetition_score * abs(w_filler_repetition) +
        content_strength_val * w_content_strengths
    )
    # Normalize score to 0-1
    max_possible_score = sum([
        w_confidence,
        abs(w_anxiety),
        w_fluency,
        w_speaking_rate,
        abs(w_filler_repetition),
        w_content_strengths
    ])
    normalized_score = (raw_score / max_possible_score) if max_possible_score > 0 else 0.5
    acceptance_probability = max(0.0, min(1.0, normalized_score))
    return float(f"{acceptance_probability * 100:.2f}")
def generate_report(analysis_data: Dict) -> str:
    try:
        voice = analysis_data.get('voice_analysis', {})
        voice_interpretation = generate_voice_interpretation(voice)
        interviewee_responses = [
            f"- {u['text']}"
            for u in analysis_data['transcript']
            if u.get('role') == 'Interviewee'
        ] or ["- No interviewee responses available."]
        full_responses_text = "\n".join([u['text'] for u in analysis_data['transcript'] if u.get('role') == 'Interviewee'])
        acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
        acceptance_line = f"\n**Suitability Score: {acceptance_prob:.2f}%**\n"
        if acceptance_prob >= 80:
            acceptance_line += "HR Verdict: Outstanding candidate, recommended for immediate advancement."
        elif acceptance_prob >= 60:
            acceptance_line += "HR Verdict: Strong candidate, suitable for further evaluation."
        elif acceptance_prob >= 40:
            acceptance_line += "HR Verdict: Moderate potential, needs additional assessment."
        else:
            acceptance_line += "HR Verdict: Limited fit, significant improvement required."
        prompt = f"""
You are EvalBot, a highly experienced senior HR analyst generating a comprehensive interview evaluation report based on both objective metrics and full interviewee responses.
Your task:
- Analyze deeply based on actual responses provided below. Avoid generic analysis.
- Use only insights that can be inferred from the answers or provided metrics.
- Maintain professional, HR-standard language with clear structure and bullet points.
- Avoid redundancy or overly generic feedback.
- The responses are real interviewee answers, treat them as high-priority source.
{acceptance_line}
### Interviewee Full Responses:
{full_responses_text}
### Metrics Summary:
- Duration: {analysis_data['text_analysis']['total_duration']:.2f} seconds
- Speaker Turns: {analysis_data['text_analysis']['speaker_turns']}
- Speaking Rate: {voice.get('speaking_rate', 'N/A')} words/sec
- Filler Words: {voice.get('filler_ratio', 0) * 100:.1f}%
- Confidence Level: {voice.get('interpretation', {}).get('confidence_level', 'N/A')}
- Anxiety Level: {voice.get('interpretation', {}).get('anxiety_level', 'N/A')}
- Fluency Level: {voice.get('interpretation', {}).get('fluency_level', 'N/A')}
- Voice Interpretation Summary: {voice_interpretation}
### Report Sections to Generate:
**1. Executive Summary**
- 3 bullets summarizing performance, key strengths, and hiring recommendation.
- Mention relevant metrics when applicable.
**2. Communication and Vocal Dynamics**
- Analyze delivery: speaking rate, filler words, confidence, anxiety, fluency.
- Provide 3-4 insightful bullets.
- Give 1 actionable improvement recommendation for workplace communication.
**3. Competency and Content**
- Identify 5-8 strengths (use HR competencies: leadership, teamwork, problem-solving, etc.).
- For each: provide short explanation + concrete example inferred from responses.
- Identify 5-10 weaknesses or development areas.
- For each weakness: provide actionable, practical feedback.
**4. Role Fit and Potential**
- Analyze role fit, cultural fit, growth potential in 3 bullets.
- Use examples from responses whenever possible.
**5. Recommendations**
- Provide 5 actionable recommendations categorized into:
    - Communication Skills
    - Content Delivery
    - Professional Presentation
- Each recommendation should include a short improvement strategy/example.
**Next Steps for Hiring Managers**
- Provide 5 clear next steps: next round, training, assessment, mentorship, role fit review.
Ensure each section is clearly titled exactly as requested above.
Avoid repetition between sections.
Use professional HR tone.
Begin the full analysis now.
"""
        response = gemini_model.generate_content(prompt)
        clean_text = re.sub(r'[^\x20-\x7E\n]+', '', response.text)
        return clean_text
    except Exception as e:
        logger.error(f"Report generation failed: {str(e)}")
        return f"Error generating report: {str(e)}"

def convert_markdown_to_rml(text):
    return re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)

def header_footer(canvas, doc):
    canvas.saveState()
    canvas.setFont('Helvetica', 8)
    canvas.setFillColor(colors.HexColor('#666666'))
    canvas.drawString(doc.leftMargin, 0.5*inch, f"Page {doc.page} | EvalBot HR Interview Report | Confidential")
    canvas.drawRightString(doc.width + doc.leftMargin, 0.5*inch, time.strftime('%B %d, %Y'))
    canvas.setStrokeColor(colors.HexColor('#0050BC'))
    canvas.setLineWidth(0.8)
    canvas.line(doc.leftMargin, doc.height + 0.9*inch, doc.width + doc.leftMargin, doc.height + 0.9*inch)
    canvas.setFont('Helvetica-Bold', 9)
    canvas.drawString(doc.leftMargin, doc.height + 0.95*inch, "Candidate Interview Analysis")
    canvas.restoreState()

def create_pdf_report(analysis_data: Dict, output_path: str, gemini_report_text: str) -> bool:
    try:
        doc = SimpleDocTemplate(
            output_path,
            pagesize=letter,
            rightMargin=0.75 * inch,
            leftMargin=0.75 * inch,
            topMargin=1 * inch,
            bottomMargin=1 * inch
        )
        styles = getSampleStyleSheet()
        cover_title = ParagraphStyle(name='CoverTitle', fontSize=24, leading=28, spaceAfter=20, alignment=TA_CENTER, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
        h1 = ParagraphStyle(name='Heading1', fontSize=16, leading=20, spaceAfter=14, alignment=TA_CENTER, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
        h2 = ParagraphStyle(name='Heading2', fontSize=12, leading=15, spaceBefore=10, spaceAfter=8, textColor=colors.HexColor('#0050BC'), fontName='Helvetica-Bold')
        body_text = ParagraphStyle(name='BodyText', fontSize=10, leading=14, spaceAfter=6, fontName='Helvetica', textColor=colors.HexColor('#333333'))
        bullet_style = ParagraphStyle(name='Bullet', parent=body_text, leftIndent=20, bulletIndent=10, bulletFontName='Helvetica', bulletFontSize=10)
        story = []
        story.append(Spacer(1, 2 * inch))
        story.append(Paragraph("Candidate Interview Analysis Report", cover_title))
        story.append(Spacer(1, 0.5 * inch))
        story.append(Paragraph(f"Candidate ID: {analysis_data.get('user_id', 'N/A')}", body_text))
        story.append(Paragraph(f"Generated: {time.strftime('%B %d, %Y')}", body_text))
        story.append(Spacer(1, 0.5 * inch))
        story.append(Paragraph("Confidential", ParagraphStyle(name='Confidential', fontSize=12, alignment=TA_CENTER, textColor=colors.HexColor('#D32F2F'), fontName='Helvetica-Bold')))
        story.append(PageBreak())
        story.append(Paragraph("Interview Evaluation Summary", h1))
        story.append(Spacer(1, 0.3 * inch))
        acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
        prob_color = colors.HexColor('#2E7D32') if acceptance_prob >= 80 else (colors.HexColor('#F57C00') if acceptance_prob >= 60 else colors.HexColor('#D32F2F'))
        story.append(Paragraph(f"Suitability Score: <font size=14 color='{prob_color.hexval()}'><b>{acceptance_prob:.2f}%</b></font>", h1))
        story.append(Spacer(1, 0.3 * inch))
        composite_scores = analysis_data.get('voice_analysis', {}).get('composite_scores', {})
        if composite_scores:
            chart_buffer = io.BytesIO()
            generate_anxiety_confidence_chart(composite_scores, chart_buffer)
            chart_buffer.seek(0)
            chart_img = Image(chart_buffer, width=4*inch, height=2.5*inch)
            story.append(Paragraph("Vocal Dynamics: Anxiety vs. Confidence", h2))
            story.append(Spacer(1, 0.2 * inch))
            story.append(chart_img)
            story.append(Spacer(1, 0.3 * inch))
        story.append(Paragraph("Full Interview Report", h2))
        story.append(Spacer(1, 0.2 * inch))
        for line in gemini_report_text.split('\n'):
            line = line.strip()
            if not line:
                continue
            if line.startswith('**') and line.endswith('**'):
                header_text = convert_markdown_to_rml(line[2:-2])
                story.append(Spacer(1, 12))
                story.append(Paragraph(header_text, h2))
                story.append(Spacer(1, 6))
            elif line.startswith('- ') or line.startswith('* '):
                content = convert_markdown_to_rml(line[2:])
                story.append(Paragraph(f'• {content}', bullet_style))
            else:
                content = convert_markdown_to_rml(line)
                story.append(Paragraph(content, body_text))
                story.append(Spacer(1, 4))
        doc.build(story, onFirstPage=header_footer, onLaterPages=header_footer)
        if not os.access(output_path, os.W_OK) or not os.path.exists(output_path):
            raise IOError(f"PDF file not accessible or created: {output_path}")
        logger.info(f"PDF report generated successfully: {output_path}")
        return True
    except Exception as e:
        logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
        return False

def convert_to_serializable(obj):
    if isinstance(obj, np.generic):
        return obj.item()
    elif isinstance(obj, (np.float32, np.float64, np.int32, np.int64)):
        return obj.item()
    elif isinstance(obj, torch.Tensor):
        return obj.cpu().numpy().tolist()
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, dict):
        return {key: convert_to_serializable(value) for key, value in obj.items()}
    elif isinstance(obj, list):
        return [convert_to_serializable(item) for item in obj]
    else:
        try:
            json.dumps(obj)
            return obj
        except (TypeError, OverflowError):
            logger.warning(f"Non-serializable type encountered: {type(obj)}. Converting to str.")
            return str(obj)

def process_interview(audio_path: str, user_id: str = "candidate-123") -> Dict:
    try:
        logger.info(f"Starting processing for {audio_path} (User ID: {user_id})")
        wav_file = convert_to_wav(audio_path)
        logger.debug(f"Created WAV file: {wav_file}")
        logger.info("Starting transcription")
        transcript = transcribe(wav_file)
        logger.info("Transcript result: %s", transcript)
        if not transcript or 'utterances' not in transcript or not transcript['utterances']:
            logger.error("Transcription failed or returned empty utterances")
            raise ValueError("Transcription failed or returned empty utterances")
        logger.info("Extracting prosodic features")
        for utterance in transcript['utterances']:
            utterance['prosodic_features'] = extract_prosodic_features(
                wav_file,
                utterance['start'],
                utterance['end']
            )
        logger.info("Identifying speakers")
        utterances_with_speakers = identify_speakers(transcript, wav_file)
        logger.info("Classifying roles")
        if os.path.exists(os.path.join(OUTPUT_DIR, 'role_classifier.pkl')):
            clf = joblib.load(os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
            vectorizer = joblib.load(os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
            scaler = joblib.load(os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))
        else:
            clf, vectorizer, scaler = train_role_classifier(utterances_with_speakers)
        classified_utterances = classify_roles(utterances_with_speakers, clf, vectorizer, scaler)
        logger.info("Analyzing interviewee voice")
        voice_analysis = analyze_interviewee_voice(wav_file, classified_utterances)
        analysis_data = {
            'user_id': user_id,
            'transcript': classified_utterances,
            'speakers': list(set(u['speaker'] for u in classified_utterances)),
            'voice_analysis': voice_analysis,
            'text_analysis': {
                'total_duration': sum(u['prosodic_features']['duration'] for u in classified_utterances),
                'speaker_turns': len(classified_utterances)
            }
        }
        acceptance_probability = calculate_acceptance_probability(analysis_data)
        analysis_data['acceptance_probability'] = acceptance_probability
        logger.info("Generating report text using Gemini")
        gemini_report_text = generate_report(analysis_data)
        base_name = f"{user_id}_{os.path.splitext(os.path.basename(audio_path))[0].split('_', 1)[1]}"
        pdf_path = os.path.join(OUTPUT_DIR, f"{base_name}_report.pdf")
        if not create_pdf_report(analysis_data, pdf_path, gemini_report_text=gemini_report_text):
            logger.error(f"Failed to create PDF report: {pdf_path}")
            raise RuntimeError("PDF report generation failed")
        try:
            json_path = os.path.join(OUTPUT_DIR, f"{base_name}_analysis.json")
            with open(json_path, 'w') as f:
                logger.debug(f"Serializing analysis_data with keys: {list(analysis_data.keys())}")
                serializable_data = convert_to_serializable(analysis_data)
                json.dump(serializable_data, f, indent=2)
        except Exception as e:
            logger.error(f"Failed to serialize analysis_data to JSON: {str(e)}", exc_info=True)
            raise
        os.remove(wav_file)
        logger.info(f"Processing completed for {audio_path} (User ID: {user_id})")
        return {
            'summary': f"User ID: {user_id}\nspeakers: {', '.join(analysis_data['speakers'])}",
            'json_path': json_path,
            'pdf_path': pdf_path
        }
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}", exc_info=True)
        if 'wav_file' in locals() and os.path.exists(wav_file):
            os.remove(wav_file)
        raise