File size: 38,303 Bytes
b99f63d 3e7be75 b99f63d e9aca23 b99f63d e9aca23 b99f63d e9aca23 777cf03 e9aca23 b99f63d 777cf03 b99f63d 1f7c230 b99f63d e9aca23 b99f63d e9aca23 b99f63d e9aca23 b99f63d 777cf03 b99f63d e9aca23 b99f63d 777cf03 b99f63d 777cf03 b99f63d 777cf03 b99f63d e9aca23 b99f63d e9aca23 b99f63d e9aca23 3e7be75 e9aca23 b99f63d e9aca23 3e7be75 e9aca23 3e7be75 e9aca23 b99f63d e9aca23 b99f63d 6441ccf 893487f 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 893487f b99f63d 7c8bde4 893487f 7c8bde4 893487f b99f63d 893487f b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 893487f b99f63d 7c8bde4 b99f63d 893487f b99f63d 7c8bde4 893487f 7c8bde4 893487f b99f63d 893487f b99f63d 893487f b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 7c8bde4 b99f63d 893487f 7c8bde4 b99f63d e9aca23 b99f63d e9aca23 b99f63d e9aca23 b99f63d e9aca23 b99f63d 2be61a7 b99f63d 2be61a7 b99f63d 2be61a7 b99f63d e9aca23 2be61a7 b99f63d e9aca23 b99f63d e9aca23 3e7be75 e9aca23 2be61a7 b99f63d 2be61a7 b99f63d 2be61a7 b99f63d e9aca23 2be61a7 3e7be75 2be61a7 e9aca23 2be61a7 b99f63d e9aca23 2be61a7 e9aca23 3e7be75 e9aca23 b99f63d 2be61a7 e9aca23 b99f63d e9aca23 b99f63d 1f7c230 3e7be75 b99f63d 3e7be75 b99f63d e9aca23 b99f63d 1f7c230 b99f63d 1f7c230 b99f63d 777cf03 b99f63d 1f7c230 b99f63d 1f7c230 b99f63d 3e7be75 e9aca23 b99f63d 1f7c230 b99f63d 1f7c230 b99f63d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
import os
import torch
import numpy as np
import uuid
import requests
import time
import json
from pydub import AudioSegment
import wave
from nemo.collections.asr.models import EncDecSpeakerLabelModel
from pinecone import Pinecone, ServerlessSpec
import librosa
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
import re
from typing import Dict, List, Tuple
import logging
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
import io
from transformers import AutoTokenizer, AutoModel
import spacy
import google.generativeai as genai
import joblib
from concurrent.futures import ThreadPoolExecutor
from reportlab.lib.enums import TA_CENTER
import subprocess
from contextlib import contextmanager
import tempfile
import multiprocessing
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.getLogger("nemo_logging").setLevel(logging.ERROR)
logging.getLogger("nemo").setLevel(logging.ERROR)
# Configuration
AUDIO_DIR = "./Uploads"
OUTPUT_DIR = "./processed_audio"
BASE_URL = "https://norhan12-evalbot-interview-analysis.hf.space"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# API Keys
PINECONE_KEY = os.getenv("PINECONE_KEY")
ASSEMBLYAI_KEY = os.getenv("ASSEMBLYAI_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Validate environment variables
def validate_env_vars():
required_keys = ['PINECONE_KEY', 'ASSEMBLYAI_KEY', 'GEMINI_API_KEY']
missing = [key for key in required_keys if not os.getenv(key)]
if missing:
raise ValueError(f"Missing environment variables: {', '.join(missing)}")
validate_env_vars()
# Initialize services
def initialize_services():
try:
pc = Pinecone(api_key=PINECONE_KEY)
index_name = "interview-speaker-embeddings"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=192,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1")
)
index = pc.Index(index_name)
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
return index, gemini_model
except Exception as e:
logger.error(f"Error initializing services: {str(e)}")
raise
index, gemini_model = initialize_services()
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
def load_speaker_model():
try:
torch.set_num_threads(5)
model = EncDecSpeakerLabelModel.from_pretrained(
"nvidia/speakerverification_en_titanet_large",
map_location=device
)
model.eval()
return model
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise RuntimeError("Could not load speaker verification model")
def load_models():
speaker_model = load_speaker_model()
nlp = spacy.load("en_core_web_sm")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
llm_model = AutoModel.from_pretrained("distilbert-base-uncased").to(device)
llm_model.eval()
return speaker_model, nlp, tokenizer, llm_model
speaker_model, nlp, tokenizer, llm_model = load_models()
@contextmanager
def temp_audio_file():
temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
try:
yield temp_file.name
finally:
try:
os.remove(temp_file.name)
except OSError as e:
logger.warning(f"Failed to delete temp file {temp_file.name}: {e}")
def convert_to_wav(input_path: str, output_dir: str = OUTPUT_DIR) -> str:
try:
os.makedirs(output_dir, exist_ok=True)
temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
output_path = temp_file.name
command = [
'ffmpeg', '-y',
'-i', input_path,
'-vn',
'-acodec', 'pcm_s16le',
'-ar', '16000',
'-ac', '1',
output_path
]
subprocess.run(command, check=True, capture_output=True, text=True)
if not os.path.exists(output_path):
raise FileNotFoundError(f"FFmpeg failed to create WAV file: {output_path}")
size_in_mb = os.path.getsize(output_path) / (1024*1024)
logger.info(f"WAV file size: {size_in_mb:.2f} MB")
return output_path
except Exception as e:
logger.error(f"Audio conversion failed: {str(e)}")
raise
def extract_prosodic_features(audio_path: str, start_ms: int, end_ms: int) -> Dict:
try:
audio = AudioSegment.from_file(audio_path)
segment = audio[start_ms:end_ms]
with temp_audio_file() as temp_path:
segment.export(temp_path, format="wav")
y, sr = librosa.load(temp_path, sr=16000)
pitches = librosa.piptrack(y=y, sr=sr)[0]
pitches = pitches[pitches > 0]
features = {
'duration': (end_ms - start_ms) / 1000,
'mean_pitch': float(np.mean(pitches)) if len(pitches) > 0 else 0.0,
'min_pitch': float(np.min(pitches)) if len(pitches) > 0 else 0.0,
'max_pitch': float(np.max(pitches)) if len(pitches) > 0 else 0.0,
'pitch_sd': float(np.std(pitches)) if len(pitches) > 0 else 0.0,
'intensityMean': float(np.mean(librosa.feature.rms(y=y)[0])),
'intensityMin': float(np.min(librosa.feature.rms(y=y)[0])),
'intensityMax': float(np.max(librosa.feature.rms(y=y)[0])),
'intensitySD': float(np.std(librosa.feature.rms(y=y)[0])),
}
return features
except Exception as e:
logger.error(f"Feature extraction failed: {str(e)}")
return {
'duration': 0.0,
'mean_pitch': 0.0,
'min_pitch': 0.0,
'max_pitch': 0.0,
'pitch_sd': 0.0,
'intensityMean': 0.0,
'intensityMin': 0.0,
'intensityMax': 0.0,
'intensitySD': 0.0,
}
def transcribe(audio_path: str) -> Dict:
try:
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
logger.debug(f"Uploading audio file: {audio_path}")
with open(audio_path, 'rb') as f:
upload_response = requests.post(
"https://api.assemblyai.com/v2/upload",
headers={"authorization": ASSEMBLYAI_KEY},
data=f
)
upload_response.raise_for_status()
audio_url = upload_response.json()['upload_url']
transcript_response = requests.post(
"https://api.assemblyai.com/v2/transcript",
headers={"authorization": ASSEMBLYAI_KEY},
json={
"audio_url": audio_url,
"speaker_labels": True,
"filter_profanity": True
}
)
transcript_response.raise_for_status()
transcript_id = transcript_response.json()['id']
start_time = time.time()
max_polling_time = 600 # 10 minutes
while True:
if time.time() - start_time > max_polling_time:
raise TimeoutError("Transcription timed out after 10 minutes")
result = requests.get(
f"https://api.assemblyai.com/v2/transcript/{transcript_id}",
headers={"authorization": ASSEMBLYAI_KEY}
).json()
if result['status'] == 'completed':
return result
elif result['status'] == 'error':
raise Exception(result['error'])
time.sleep(5)
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
raise
def process_utterance(utterance, full_audio, wav_file):
try:
start = utterance['start']
end = utterance['end']
duration_ms = end - start
if duration_ms < 500:
logger.warning(f"Skipping utterance with duration {duration_ms}ms (too short): '{utterance['text'][:20]}...'")
return {
**utterance,
'speaker': 'Unknown',
'speaker_id': 'unknown',
'embedding': None
}
segment = full_audio[start:end]
with temp_audio_file() as temp_path:
segment.export(temp_path, format="wav")
y, sr = librosa.load(temp_path, sr=16000)
with torch.no_grad():
embedding = speaker_model.get_embedding(temp_path).cpu().numpy()
embedding_list = embedding.flatten().tolist()
if not any(embedding_list):
logger.warning(f"Invalid embedding for utterance: '{utterance['text'][:20]}...'")
return {
**utterance,
'speaker': 'Unknown',
'speaker_id': 'unknown',
'embedding': None
}
query_result = index.query(
vector=embedding_list,
top_k=1,
include_metadata=True
)
if query_result['matches'] and query_result['matches'][0]['score'] > 0.7:
speaker_id = query_result['matches'][0]['id']
speaker_name = query_result['matches'][0]['metadata']['speaker_name']
else:
speaker_id = f"unknown_{uuid.uuid4().hex[:6]}"
speaker_name = f"Speaker_{speaker_id[-4:]}"
index.upsert([(speaker_id, embedding_list, {"speaker_name": speaker_name})])
logger.debug(f"Processed utterance: duration={duration_ms}ms, speaker={speaker_name}, text='{utterance['text'][:20]}...'")
return {
**utterance,
'speaker': speaker_name,
'speaker_id': speaker_id,
'embedding': embedding_list
}
except Exception as e:
logger.error(f"Utterance processing failed: {str(e)}", exc_info=True)
return {
**utterance,
'speaker': 'Unknown',
'speaker_id': 'unknown',
'embedding': None
}
def identify_speakers(transcript: Dict, wav_file: str) -> List[Dict]:
try:
full_audio = AudioSegment.from_wav(wav_file)
utterances = transcript['utterances']
max_workers = min(len(utterances), multiprocessing.cpu_count())
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(process_utterance, utterance, full_audio, wav_file)
for utterance in utterances
]
results = [f.result() for f in futures]
return results
except Exception as e:
logger.error(f"Speaker identification failed: {str(e)}")
raise
def train_role_classifier(utterances: List[Dict]):
try:
texts = [u['text'] for u in utterances] # تم حذف الـ 'u' الزائدة
vectorizer = TfidfVectorizer(max_features=500, ngram_range=(1, 2))
X_text = vectorizer.fit_transform(texts)
features = []
labels = []
for i, utterance in enumerate(utterances):
prosodic = utterance['prosodic_features']
feat = [
prosodic['duration'],
prosodic['mean_pitch'],
prosodic['min_pitch'],
prosodic['max_pitch'],
prosodic['pitch_sd'],
prosodic['intensityMean'],
prosodic['intensityMin'],
prosodic['intensityMax'],
prosodic['intensitySD'],
]
feat.extend(X_text[i].toarray()[0].tolist())
doc = nlp(utterance['text'])
feat.extend([
int(utterance['text'].endswith('?')),
len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
len(utterance['text'].split()),
sum(1 for token in doc if token.pos_ == 'VERB'),
sum(1 for token in doc if token.pos_ == 'NOUN')
])
features.append(feat)
labels.append(0 if i % 2 == 0 else 1)
scaler = StandardScaler()
X = scaler.fit_transform(features)
clf = RandomForestClassifier(
n_estimators=150,
max_depth=10,
random_state=42,
class_weight='balanced'
)
clf.fit(X, labels)
joblib.dump(clf, os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
joblib.dump(vectorizer, os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
joblib.dump(scaler, os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))
return clf, vectorizer, scaler
except Exception as e:
logger.error(f"Classifier training failed: {str(e)}")
raise
def classify_roles(utterances: List[Dict], clf, vectorizer, scaler):
try:
texts = [u['text'] for u in utterances]
X_text = vectorizer.transform(texts)
results = []
for i, utterance in enumerate(utterances):
prosodic = utterance['prosodic_features']
feat = [
prosodic['duration'],
prosodic['mean_pitch'],
prosodic['min_pitch'],
prosodic['max_pitch'],
prosodic['pitch_sd'],
prosodic['intensityMean'],
prosodic['intensityMin'],
prosodic['intensityMax'],
prosodic['intensitySD'],
]
feat.extend(X_text[i].toarray()[0].tolist())
doc = nlp(utterance['text'])
feat.extend([
int(utterance['text'].endswith('?')),
len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
len(utterance['text'].split()),
sum(1 for token in doc if token.pos_ == 'VERB'),
sum(1 for token in doc if token.pos_ == 'NOUN')
])
X = scaler.transform([feat])
role = 'Interviewer' if clf.predict(X)[0] == 0 else 'Interviewee'
results.append({**utterance, 'role': role})
return results
except Exception as e:
logger.error(f"Role classification failed: {str(e)}")
raise
def analyze_interviewee_voice(audio_path: str, utterances: List[Dict]) -> Dict:
try:
y, sr = librosa.load(audio_path, sr=16000)
interviewee_utterances = [u for u in utterances if u['role'] == 'Interviewee']
if not interviewee_utterances:
return {'error': 'No interviewee utterances found'}
segments = []
for u in interviewee_utterances:
start = int(u['start'] * sr / 1000)
end = int(u['end'] * sr / 1000)
segments.append(y[start:end])
combined_audio = np.concatenate(segments)
total_duration = sum(u['prosodic_features']['duration'] for u in interviewee_utterances)
total_words = sum(len(u['text'].split()) for u in interviewee_utterances)
speaking_rate = total_words / total_duration if total_duration > 0 else 0
filler_words = ['um', 'uh', 'like', 'you know', 'so', 'i mean']
filler_count = sum(
sum(u['text'].lower().count(fw) for fw in filler_words)
for u in interviewee_utterances
)
filler_ratio = filler_count / total_words if total_words > 0 else 0
all_words = ' '.join(u['text'].lower() for u in interviewee_utterances).split()
word_counts = {}
for i in range(len(all_words) - 1):
bigram = (all_words[i], all_words[i + 1])
word_counts[bigram] = word_counts.get(bigram, 0) + 1
repetition_score = sum(1 for count in word_counts.values() if count > 1) / len(word_counts) if word_counts else 0
pitches = []
for segment in segments:
f0, voiced_flag, _ = librosa.pyin(segment, fmin=80, fmax=300, sr=sr)
pitches.extend(f0[voiced_flag])
pitch_mean = np.mean(pitches) if len(pitches) > 0 else 0
pitch_std = np.std(pitches) if len(pitches) > 0 else 0
jitter = np.mean(np.abs(np.diff(pitches))) / pitch_mean if len(pitches) > 1 and pitch_mean > 0 else 0
intensities = []
for segment in segments:
rms = librosa.feature.rms(y=segment)[0]
intensities.extend(rms)
intensity_mean = np.mean(intensities) if intensities else 0
intensity_std = np.std(intensities) if intensities else 0
shimmer = np.mean(np.abs(np.diff(intensities))) / intensity_mean if len(intensities) > 1 and intensity_mean > 0 else 0
anxiety_score = 0.6 * (pitch_std / pitch_mean) + 0.4 * (jitter + shimmer) if pitch_mean > 0 else 0
confidence_score = 0.7 * (1 / (1 + intensity_std)) + 0.3 * (1 / (1 + filler_ratio))
hesitation_score = filler_ratio + repetition_score
anxiety_level = 'high' if anxiety_score > 0.15 else 'moderate' if anxiety_score > 0.07 else 'low'
confidence_level = 'high' if confidence_score > 0.7 else 'moderate' if confidence_score > 0.5 else 'low'
fluency_level = 'fluent' if (filler_ratio < 0.05 and repetition_score < 0.1) else 'moderate' if (
filler_ratio < 0.1 and repetition_score < 0.2) else 'disfluent'
return {
'speaking_rate': float(round(speaking_rate, 2)),
'filler_ratio': float(round(filler_ratio, 4)),
'repetition_score': float(round(repetition_score, 4)),
'pitch_analysis': {
'mean': float(round(pitch_mean, 2)),
'std_dev': float(round(pitch_std, 2)),
'jitter': float(round(jitter, 4))
},
'intensity_analysis': {
'mean': float(round(intensity_mean, 2)),
'std_dev': float(round(intensity_std, 2)),
'shimmer': float(round(shimmer, 4))
},
'composite_scores': {
'anxiety': float(round(anxiety_score, 4)),
'confidence': float(round(confidence_score, 4)),
'hesitation': float(round(hesitation_score, 4))
},
'interpretation': {
'anxiety_level': anxiety_level,
'confidence_level': confidence_level,
'fluency_level': fluency_level
}
}
except Exception as e:
logger.error(f"Voice analysis failed: {str(e)}")
return {'error': str(e)}
def generate_voice_interpretation(analysis: Dict) -> str:
if 'error' in analysis:
return "Voice analysis not available."
interpretation_lines = []
interpretation_lines.append("Voice Analysis Summary:")
interpretation_lines.append(f"- Speaking Rate: {analysis['speaking_rate']} words/sec (average)")
interpretation_lines.append(f"- Filler Words: {analysis['filler_ratio'] * 100:.1f}% of words")
interpretation_lines.append(f"- Repetition Score: {analysis['repetition_score']:.3f}")
interpretation_lines.append(
f"- Anxiety Level: {analysis['interpretation']['anxiety_level'].upper()} (score: {analysis['composite_scores']['anxiety']:.3f})")
interpretation_lines.append(
f"- Confidence Level: {analysis['interpretation']['confidence_level'].upper()} (score: {analysis['composite_scores']['confidence']:.3f})")
interpretation_lines.append(f"- Fluency: {analysis['interpretation']['fluency_level'].upper()}")
interpretation_lines.append("")
interpretation_lines.append("Detailed Interpretation:")
interpretation_lines.append("1. A higher speaking rate indicates faster speech, which can suggest nervousness or enthusiasm.")
interpretation_lines.append("2. Filler words and repetitions reduce speech clarity and professionalism.")
interpretation_lines.append("3. Anxiety is measured through pitch variability and voice instability.")
interpretation_lines.append("4. Confidence is assessed through voice intensity and stability.")
interpretation_lines.append("5. Fluency combines filler words and repetition metrics.")
return "\n".join(interpretation_lines)
def generate_anxiety_confidence_chart(composite_scores: Dict, chart_path_or_buffer):
try:
labels = ['Anxiety', 'Confidence']
scores = [composite_scores.get('anxiety', 0), composite_scores.get('confidence', 0)]
fig, ax = plt.subplots(figsize=(5, 3))
bars = ax.bar(labels, scores, color=['#FF6B6B', '#4ECDC4'], edgecolor='black', width=0.6)
ax.set_ylabel('Score (Normalized)', fontsize=12)
ax.set_title('Vocal Dynamics: Anxiety vs. Confidence', fontsize=14, pad=15)
ax.set_ylim(0, 1.2)
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2, height + 0.05, f"{height:.2f}",
ha='center', color='black', fontweight='bold', fontsize=11)
ax.grid(True, axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(chart_path_or_buffer, format='png', bbox_inches='tight', dpi=200)
plt.close(fig)
except Exception as e:
logger.error(f"Error generating chart: {str(e)}")
import re
from typing import Dict
def calculate_acceptance_probability(analysis_data: Dict) -> float:
"""
Calculates an acceptance probability based on voice analysis and content strength.
Combines multiple voice features and analyzes Gemini report text for strengths extraction.
"""
voice = analysis_data.get('voice_analysis', {})
# Handle error case early
if 'error' in voice:
return 0.0
# Define weights
w_confidence = 0.4
w_anxiety = -0.3
w_fluency = 0.2
w_speaking_rate = 0.1
w_filler_repetition = -0.1
w_content_strengths = 0.2
# Extract voice features
confidence_score = voice.get('composite_scores', {}).get('confidence', 0.0)
anxiety_score = voice.get('composite_scores', {}).get('anxiety', 0.0)
fluency_level = voice.get('interpretation', {}).get('fluency_level', 'disfluent')
speaking_rate = voice.get('speaking_rate', 0.0)
filler_ratio = voice.get('filler_ratio', 0.0)
repetition_score = voice.get('repetition_score', 0.0)
# Map fluency level to numeric score
fluency_map = {'fluent': 1.0, 'moderate': 0.5, 'disfluent': 0.0}
fluency_val = fluency_map.get(fluency_level, 0.0)
# Speaking rate scoring
ideal_speaking_rate = 2.5 # words/sec
speaking_rate_deviation = abs(speaking_rate - ideal_speaking_rate)
speaking_rate_score = max(0, 1 - (speaking_rate_deviation / ideal_speaking_rate))
# Filler and repetition combined score
filler_repetition_composite = (filler_ratio + repetition_score) / 2
filler_repetition_score = max(0, 1 - filler_repetition_composite)
# Content strength extraction from Gemini report text
gemini_report = analysis_data.get('gemini_report_text', '')
strength_count = len(re.findall(r'Strengths?:', gemini_report, re.IGNORECASE))
content_strength_val = min(1.0, strength_count / 5.0) if strength_count else 0.5
# Calculate raw score
raw_score = (
confidence_score * w_confidence +
(1 - anxiety_score) * abs(w_anxiety) + # lower anxiety = better score
fluency_val * w_fluency +
speaking_rate_score * w_speaking_rate +
filler_repetition_score * abs(w_filler_repetition) +
content_strength_val * w_content_strengths
)
# Normalize score to 0-1
max_possible_score = sum([
w_confidence,
abs(w_anxiety),
w_fluency,
w_speaking_rate,
abs(w_filler_repetition),
w_content_strengths
])
normalized_score = (raw_score / max_possible_score) if max_possible_score > 0 else 0.5
acceptance_probability = max(0.0, min(1.0, normalized_score))
return float(f"{acceptance_probability * 100:.2f}")
def generate_report(analysis_data: Dict) -> str:
try:
voice = analysis_data.get('voice_analysis', {})
voice_interpretation = generate_voice_interpretation(voice)
interviewee_responses = [
f"- {u['text']}"
for u in analysis_data['transcript']
if u.get('role') == 'Interviewee'
] or ["- No interviewee responses available."]
full_responses_text = "\n".join([u['text'] for u in analysis_data['transcript'] if u.get('role') == 'Interviewee'])
acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
acceptance_line = f"\n**Suitability Score: {acceptance_prob:.2f}%**\n"
if acceptance_prob >= 80:
acceptance_line += "HR Verdict: Outstanding candidate, recommended for immediate advancement."
elif acceptance_prob >= 60:
acceptance_line += "HR Verdict: Strong candidate, suitable for further evaluation."
elif acceptance_prob >= 40:
acceptance_line += "HR Verdict: Moderate potential, needs additional assessment."
else:
acceptance_line += "HR Verdict: Limited fit, significant improvement required."
prompt = f"""
You are EvalBot, a highly experienced senior HR analyst generating a comprehensive interview evaluation report based on both objective metrics and full interviewee responses.
Your task:
- Analyze deeply based on actual responses provided below. Avoid generic analysis.
- Use only insights that can be inferred from the answers or provided metrics.
- Maintain professional, HR-standard language with clear structure and bullet points.
- Avoid redundancy or overly generic feedback.
- The responses are real interviewee answers, treat them as high-priority source.
{acceptance_line}
### Interviewee Full Responses:
{full_responses_text}
### Metrics Summary:
- Duration: {analysis_data['text_analysis']['total_duration']:.2f} seconds
- Speaker Turns: {analysis_data['text_analysis']['speaker_turns']}
- Speaking Rate: {voice.get('speaking_rate', 'N/A')} words/sec
- Filler Words: {voice.get('filler_ratio', 0) * 100:.1f}%
- Confidence Level: {voice.get('interpretation', {}).get('confidence_level', 'N/A')}
- Anxiety Level: {voice.get('interpretation', {}).get('anxiety_level', 'N/A')}
- Fluency Level: {voice.get('interpretation', {}).get('fluency_level', 'N/A')}
- Voice Interpretation Summary: {voice_interpretation}
### Report Sections to Generate:
**1. Executive Summary**
- 3 bullets summarizing performance, key strengths, and hiring recommendation.
- Mention relevant metrics when applicable.
**2. Communication and Vocal Dynamics**
- Analyze delivery: speaking rate, filler words, confidence, anxiety, fluency.
- Provide 3-4 insightful bullets.
- Give 1 actionable improvement recommendation for workplace communication.
**3. Competency and Content**
- Identify 5-8 strengths (use HR competencies: leadership, teamwork, problem-solving, etc.).
- For each: provide short explanation + concrete example inferred from responses.
- Identify 5-10 weaknesses or development areas.
- For each weakness: provide actionable, practical feedback.
**4. Role Fit and Potential**
- Analyze role fit, cultural fit, growth potential in 3 bullets.
- Use examples from responses whenever possible.
**5. Recommendations**
- Provide 5 actionable recommendations categorized into:
- Communication Skills
- Content Delivery
- Professional Presentation
- Each recommendation should include a short improvement strategy/example.
**Next Steps for Hiring Managers**
- Provide 5 clear next steps: next round, training, assessment, mentorship, role fit review.
Ensure each section is clearly titled exactly as requested above.
Avoid repetition between sections.
Use professional HR tone.
Begin the full analysis now.
"""
response = gemini_model.generate_content(prompt)
clean_text = re.sub(r'[^\x20-\x7E\n]+', '', response.text)
return clean_text
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
return f"Error generating report: {str(e)}"
def convert_markdown_to_rml(text):
return re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
def header_footer(canvas, doc):
canvas.saveState()
canvas.setFont('Helvetica', 8)
canvas.setFillColor(colors.HexColor('#666666'))
canvas.drawString(doc.leftMargin, 0.5*inch, f"Page {doc.page} | EvalBot HR Interview Report | Confidential")
canvas.drawRightString(doc.width + doc.leftMargin, 0.5*inch, time.strftime('%B %d, %Y'))
canvas.setStrokeColor(colors.HexColor('#0050BC'))
canvas.setLineWidth(0.8)
canvas.line(doc.leftMargin, doc.height + 0.9*inch, doc.width + doc.leftMargin, doc.height + 0.9*inch)
canvas.setFont('Helvetica-Bold', 9)
canvas.drawString(doc.leftMargin, doc.height + 0.95*inch, "Candidate Interview Analysis")
canvas.restoreState()
def create_pdf_report(analysis_data: Dict, output_path: str, gemini_report_text: str) -> bool:
try:
doc = SimpleDocTemplate(
output_path,
pagesize=letter,
rightMargin=0.75 * inch,
leftMargin=0.75 * inch,
topMargin=1 * inch,
bottomMargin=1 * inch
)
styles = getSampleStyleSheet()
cover_title = ParagraphStyle(name='CoverTitle', fontSize=24, leading=28, spaceAfter=20, alignment=TA_CENTER, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
h1 = ParagraphStyle(name='Heading1', fontSize=16, leading=20, spaceAfter=14, alignment=TA_CENTER, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
h2 = ParagraphStyle(name='Heading2', fontSize=12, leading=15, spaceBefore=10, spaceAfter=8, textColor=colors.HexColor('#0050BC'), fontName='Helvetica-Bold')
body_text = ParagraphStyle(name='BodyText', fontSize=10, leading=14, spaceAfter=6, fontName='Helvetica', textColor=colors.HexColor('#333333'))
bullet_style = ParagraphStyle(name='Bullet', parent=body_text, leftIndent=20, bulletIndent=10, bulletFontName='Helvetica', bulletFontSize=10)
story = []
story.append(Spacer(1, 2 * inch))
story.append(Paragraph("Candidate Interview Analysis Report", cover_title))
story.append(Spacer(1, 0.5 * inch))
story.append(Paragraph(f"Candidate ID: {analysis_data.get('user_id', 'N/A')}", body_text))
story.append(Paragraph(f"Generated: {time.strftime('%B %d, %Y')}", body_text))
story.append(Spacer(1, 0.5 * inch))
story.append(Paragraph("Confidential", ParagraphStyle(name='Confidential', fontSize=12, alignment=TA_CENTER, textColor=colors.HexColor('#D32F2F'), fontName='Helvetica-Bold')))
story.append(PageBreak())
story.append(Paragraph("Interview Evaluation Summary", h1))
story.append(Spacer(1, 0.3 * inch))
acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
prob_color = colors.HexColor('#2E7D32') if acceptance_prob >= 80 else (colors.HexColor('#F57C00') if acceptance_prob >= 60 else colors.HexColor('#D32F2F'))
story.append(Paragraph(f"Suitability Score: <font size=14 color='{prob_color.hexval()}'><b>{acceptance_prob:.2f}%</b></font>", h1))
story.append(Spacer(1, 0.3 * inch))
composite_scores = analysis_data.get('voice_analysis', {}).get('composite_scores', {})
if composite_scores:
chart_buffer = io.BytesIO()
generate_anxiety_confidence_chart(composite_scores, chart_buffer)
chart_buffer.seek(0)
chart_img = Image(chart_buffer, width=4*inch, height=2.5*inch)
story.append(Paragraph("Vocal Dynamics: Anxiety vs. Confidence", h2))
story.append(Spacer(1, 0.2 * inch))
story.append(chart_img)
story.append(Spacer(1, 0.3 * inch))
story.append(Paragraph("Full Interview Report", h2))
story.append(Spacer(1, 0.2 * inch))
for line in gemini_report_text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('**') and line.endswith('**'):
header_text = convert_markdown_to_rml(line[2:-2])
story.append(Spacer(1, 12))
story.append(Paragraph(header_text, h2))
story.append(Spacer(1, 6))
elif line.startswith('- ') or line.startswith('* '):
content = convert_markdown_to_rml(line[2:])
story.append(Paragraph(f'• {content}', bullet_style))
else:
content = convert_markdown_to_rml(line)
story.append(Paragraph(content, body_text))
story.append(Spacer(1, 4))
doc.build(story, onFirstPage=header_footer, onLaterPages=header_footer)
if not os.access(output_path, os.W_OK) or not os.path.exists(output_path):
raise IOError(f"PDF file not accessible or created: {output_path}")
logger.info(f"PDF report generated successfully: {output_path}")
return True
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
return False
def convert_to_serializable(obj):
if isinstance(obj, np.generic):
return obj.item()
elif isinstance(obj, (np.float32, np.float64, np.int32, np.int64)):
return obj.item()
elif isinstance(obj, torch.Tensor):
return obj.cpu().numpy().tolist()
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {key: convert_to_serializable(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_to_serializable(item) for item in obj]
else:
try:
json.dumps(obj)
return obj
except (TypeError, OverflowError):
logger.warning(f"Non-serializable type encountered: {type(obj)}. Converting to str.")
return str(obj)
def process_interview(audio_path: str, user_id: str = "candidate-123") -> Dict:
try:
logger.info(f"Starting processing for {audio_path} (User ID: {user_id})")
wav_file = convert_to_wav(audio_path)
logger.debug(f"Created WAV file: {wav_file}")
logger.info("Starting transcription")
transcript = transcribe(wav_file)
logger.info("Transcript result: %s", transcript)
if not transcript or 'utterances' not in transcript or not transcript['utterances']:
logger.error("Transcription failed or returned empty utterances")
raise ValueError("Transcription failed or returned empty utterances")
logger.info("Extracting prosodic features")
for utterance in transcript['utterances']:
utterance['prosodic_features'] = extract_prosodic_features(
wav_file,
utterance['start'],
utterance['end']
)
logger.info("Identifying speakers")
utterances_with_speakers = identify_speakers(transcript, wav_file)
logger.info("Classifying roles")
if os.path.exists(os.path.join(OUTPUT_DIR, 'role_classifier.pkl')):
clf = joblib.load(os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
vectorizer = joblib.load(os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
scaler = joblib.load(os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))
else:
clf, vectorizer, scaler = train_role_classifier(utterances_with_speakers)
classified_utterances = classify_roles(utterances_with_speakers, clf, vectorizer, scaler)
logger.info("Analyzing interviewee voice")
voice_analysis = analyze_interviewee_voice(wav_file, classified_utterances)
analysis_data = {
'user_id': user_id,
'transcript': classified_utterances,
'speakers': list(set(u['speaker'] for u in classified_utterances)),
'voice_analysis': voice_analysis,
'text_analysis': {
'total_duration': sum(u['prosodic_features']['duration'] for u in classified_utterances),
'speaker_turns': len(classified_utterances)
}
}
acceptance_probability = calculate_acceptance_probability(analysis_data)
analysis_data['acceptance_probability'] = acceptance_probability
logger.info("Generating report text using Gemini")
gemini_report_text = generate_report(analysis_data)
base_name = f"{user_id}_{os.path.splitext(os.path.basename(audio_path))[0].split('_', 1)[1]}"
pdf_path = os.path.join(OUTPUT_DIR, f"{base_name}_report.pdf")
if not create_pdf_report(analysis_data, pdf_path, gemini_report_text=gemini_report_text):
logger.error(f"Failed to create PDF report: {pdf_path}")
raise RuntimeError("PDF report generation failed")
try:
json_path = os.path.join(OUTPUT_DIR, f"{base_name}_analysis.json")
with open(json_path, 'w') as f:
logger.debug(f"Serializing analysis_data with keys: {list(analysis_data.keys())}")
serializable_data = convert_to_serializable(analysis_data)
json.dump(serializable_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to serialize analysis_data to JSON: {str(e)}", exc_info=True)
raise
os.remove(wav_file)
logger.info(f"Processing completed for {audio_path} (User ID: {user_id})")
return {
'summary': f"User ID: {user_id}\nspeakers: {', '.join(analysis_data['speakers'])}",
'json_path': json_path,
'pdf_path': pdf_path
}
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
if 'wav_file' in locals() and os.path.exists(wav_file):
os.remove(wav_file)
raise
|