File size: 41,987 Bytes
b36e9ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 |
import math
from collections import namedtuple
from functools import partial
from inspect import isfunction
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import nn, einsum
DEFAULT_DIM_HEAD = 64
Intermediates = namedtuple('Intermediates', [
'pre_softmax_attn',
'post_softmax_attn'
])
LayerIntermediates = namedtuple('Intermediates', [
'hiddens',
'attn_intermediates',
'past_key_values',
])
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(), dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x):
n = torch.arange(x.shape[1], device=x.device)
pos_emb = self.emb(n)
pos_emb = rearrange(pos_emb, 'n d -> () n d')
return pos_emb * self.scale
class FixedPositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x, seq_dim=1, offset=0):
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
return rearrange(emb, 'n d -> () n d')
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def forward(self, qk_dots):
i, j, device = *qk_dots.shape[-2:], qk_dots.device
q_pos = torch.arange(i, dtype=torch.long, device=device)
k_pos = torch.arange(j, dtype=torch.long, device=device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
max_distance=self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> () h i j')
return qk_dots + (bias * self.scale)
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, **kwargs):
super().__init__()
self.heads = heads
slopes = torch.Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> () h () ()')
self.register_buffer('slopes', slopes, persistent=False)
self.register_buffer('bias', None, persistent=False)
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2 ** (-2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio ** i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
:heads - closest_power_of_2]
def forward(self, qk_dots):
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
if exists(self.bias) and self.bias.shape[-1] >= j:
return qk_dots + self.bias[..., :j]
bias = torch.arange(j, device=device)
bias = rearrange(bias, 'j -> () () () j')
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[1]
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied))
self.register_buffer('bias', bias, persistent=False)
return qk_dots + self.bias
class LearnedAlibiPositionalBias(AlibiPositionalBias):
def __init__(self, heads, bidirectional=False):
super().__init__(heads)
los_slopes = torch.log(self.slopes)
self.learned_logslopes = nn.Parameter(los_slopes)
self.bidirectional = bidirectional
if self.bidirectional:
self.learned_logslopes_future = nn.Parameter(los_slopes)
def forward(self, qk_dots):
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
def get_slopes(param):
return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1]))
if exists(self.bias) and self.bias.shape[-1] >= j:
bias = self.bias[..., :i, :j]
else:
i_arange = torch.arange(i, device=device)
j_arange = torch.arange(j, device=device)
bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1')
self.register_buffer('bias', bias, persistent=False)
if self.bidirectional:
past_slopes = get_slopes(self.learned_logslopes)
future_slopes = get_slopes(self.learned_logslopes_future)
bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes)
else:
slopes = get_slopes(self.learned_logslopes)
bias = bias * slopes
return qk_dots + bias
class RotaryEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, max_seq_len, device):
t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return rearrange(emb, 'n d -> () () n d')
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs):
seq_len = t.shape[-2]
freqs = freqs[:, :, -seq_len:]
return (t * freqs.cos()) + (rotate_half(t) * freqs.sin())
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
scale_fn = lambda t: t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class Rezero(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
self.g = nn.Parameter(torch.zeros(1))
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
rezero_fn = lambda t: t * self.g
if not isinstance(out, tuple):
return rezero_fn(out)
return (rezero_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g
class RMSScaleShiftNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
self.scale_shift_process = nn.Linear(dim * 2, dim * 2)
def forward(self, x, norm_scale_shift_inp):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
norm = x / norm.clamp(min=self.eps) * self.g
ss_emb = self.scale_shift_process(norm_scale_shift_inp)
scale, shift = torch.chunk(ss_emb, 2, dim=1)
h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return h
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual=False):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual=False):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask=None):
if amount == 0:
return t
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return F.pad(t, (0, 0, amount, -amount), value=0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim=-1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim=-1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(self, dim_in, dim_out, activation):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
glu=False,
relu_squared=False,
post_act_ln=False,
dropout=0.,
zero_init_output=False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
activation = ReluSquared() if relu_squared else nn.GELU()
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
activation
) if not glu else GLU(dim, inner_dim, activation)
self.net = nn.Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.net[-1])
def forward(self, x):
return self.net(x)
# attention.
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head=DEFAULT_DIM_HEAD,
heads=8,
causal=False,
talking_heads=False,
head_scale=False,
collab_heads=False,
collab_compression=.3,
sparse_topk=None,
use_entmax15=False,
num_mem_kv=0,
dropout=0.,
on_attn=False,
gate_values=False,
zero_init_output=False,
max_attend_past=None,
qk_norm=False,
scale_init_value=None,
rel_pos_bias=False,
rel_pos_num_buckets=32,
rel_pos_max_distance=128,
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
qk_dim = v_dim = dim_head * heads
# collaborative heads
self.collab_heads = collab_heads
if self.collab_heads:
qk_dim = int(collab_compression * qk_dim)
self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim))
self.to_q = nn.Linear(dim, qk_dim, bias=False)
self.to_k = nn.Linear(dim, qk_dim, bias=False)
self.to_v = nn.Linear(dim, v_dim, bias=False)
self.dropout = nn.Dropout(dropout)
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, v_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
if qk_norm:
scale_init_value = default(scale_init_value,
-3) # if not provided, initialize as though it were sequence length of 1024
self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value)
# talking heads
self.talking_heads = talking_heads
if talking_heads:
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# entmax
self.attn_fn = F.softmax
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim)
self.rel_pos_bias = rel_pos_bias
if rel_pos_bias:
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads,
num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
attn_mask=None,
sinusoidal_emb=None,
rotary_pos_emb=None,
prev_attn=None,
mem=None,
layer_past=None,
):
b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists(
context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
if exists(mem):
k_input = torch.cat((mem, k_input), dim=-2)
v_input = torch.cat((mem, v_input), dim=-2)
if exists(sinusoidal_emb):
# in shortformer, the query would start at a position offset depending on the past cached memory
offset = k_input.shape[-2] - q_input.shape[-2]
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
k_input = k_input + sinusoidal_emb(k_input)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input)
if not collab_heads:
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
else:
q = einsum('b i d, h d -> b h i d', q, self.collab_mixing)
k = rearrange(k, 'b n d -> b () n d')
v = rearrange(v, 'b n (h d) -> b h n d', h=h)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat([past_key, k], dim=-2)
v = torch.cat([past_value, v], dim=-2)
k_cache = k
v_cache = v
if exists(rotary_pos_emb) and not has_context:
l = rotary_pos_emb.shape[-1]
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl))
q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr)))
input_mask = None
if any(map(exists, (mask, context_mask))):
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
k_mask = q_mask if not exists(context) else context_mask
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
q_mask = rearrange(q_mask, 'b i -> b () i ()')
k_mask = rearrange(k_mask, 'b j -> b () () j')
input_mask = q_mask * k_mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
k = torch.cat((mem_k, k), dim=-2)
v = torch.cat((mem_v, v), dim=-2)
if exists(input_mask):
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
if collab_heads:
k = k.expand(-1, h, -1, -1)
if self.qk_norm:
q, k = map(l2norm, (q, k))
scale = 1 / (self.scale.exp().clamp(min=1e-2))
dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale
mask_value = max_neg_value(dots)
if exists(prev_attn):
dots = dots + prev_attn
pre_softmax_attn = dots.clone()
if talking_heads:
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
if self.rel_pos_bias:
dots = self.rel_pos(dots)
if exists(input_mask):
dots.masked_fill_(~input_mask, mask_value)
del input_mask
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> () () i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> () h i j')
dots.masked_fill_(~attn_mask, mask_value)
if exists(self.max_attend_past):
i, j = dots.shape[-2:]
range_q = torch.arange(j - i, j, device=device)
range_k = torch.arange(j, device=device)
dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j')
mask = dist > self.max_attend_past
dots.masked_fill_(mask, mask_value)
del mask
if self.causal:
i, j = dots.shape[-2:]
r = torch.arange(i, device=device)
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
mask = F.pad(mask, (j - i, 0), value=False)
dots.masked_fill_(mask, mask_value)
del mask
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
top, _ = dots.topk(self.sparse_topk, dim=-1)
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
mask = dots < vk
dots.masked_fill_(mask, mask_value)
del mask
attn = self.attn_fn(dots, dim=-1)
post_softmax_attn = attn.clone()
attn = self.dropout(attn)
if talking_heads:
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
out = einsum('b h i j, b h j d -> b h i d', attn, v)
if head_scale:
out = out * self.head_scale_params
out = rearrange(out, 'b h n d -> b n (h d)')
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
intermediates = Intermediates(
pre_softmax_attn=pre_softmax_attn,
post_softmax_attn=post_softmax_attn
)
return self.to_out(out), intermediates, k_cache, v_cache
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads=8,
causal=False,
cross_attend=False,
only_cross=False,
use_scalenorm=False,
use_rms_scaleshift_norm=False,
use_rmsnorm=False,
use_rezero=False,
alibi_pos_bias=False,
alibi_num_heads=None,
alibi_learned=False,
position_infused_attn=False,
rotary_pos_emb=False,
rotary_emb_dim=None,
custom_layers=None,
sandwich_coef=None,
par_ratio=None,
residual_attn=False,
cross_residual_attn=False,
macaron=False,
pre_norm=True,
gate_residual=False,
scale_residual=False,
shift_tokens=0,
sandwich_norm=False,
use_qk_norm_attn=False,
qk_norm_attn_seq_len=None,
zero_init_branch_output=False,
**kwargs
):
super().__init__()
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
self.causal = causal
rel_pos_bias = 'rel_pos_bias' in attn_kwargs
self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None
assert not (
alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
if alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias
self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal)
else:
self.rel_pos = None
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
self.cross_attend = cross_attend
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
norm_class = RMSNorm if use_rmsnorm else norm_class
norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class
norm_fn = partial(norm_class, dim)
norm_fn = nn.Identity if use_rezero else norm_fn
branch_fn = Rezero if use_rezero else None
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# qk normalization
if use_qk_norm_attn:
attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists(
qk_norm_attn_seq_len) else None
attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value}
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
is_last_layer = ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads=heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
if exists(branch_fn):
layer = branch_fn(layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual=scale_residual)
layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c')
pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None
post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
def forward(
self,
x,
context=None,
full_context=None, # for passing a list of hidden states from an encoder
mask=None,
context_mask=None,
attn_mask=None,
mems=None,
return_hiddens=False,
norm_scale_shift_inp=None,
past_key_values=None,
expected_seq_len=None,
):
assert not (self.cross_attend ^ (exists(context) or exists(
full_context))), 'context must be passed in if cross_attend is set to True'
assert context is None or full_context is None, 'only one of full_context or context can be provided'
hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
norm_args = {}
if exists(norm_scale_shift_inp):
norm_args['norm_scale_shift_inp'] = norm_scale_shift_inp
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
if not self.training and self.causal:
assert expected_seq_len is not None, "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`"
elif expected_seq_len is None:
expected_seq_len = 0
seq_len = x.shape[1]
if past_key_values is not None:
seq_len += past_key_values[0][0].shape[-2]
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len])
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
present_key_values = []
cross_attn_count = 0
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
if layer_type == 'a':
layer_mem = mems.pop(0) if mems else None
residual = x
pre_branch_norm, post_branch_norm, post_main_norm = norm
if exists(pre_branch_norm):
x = pre_branch_norm(x, **norm_args)
if layer_type == 'a' or layer_type == 'c':
if past_key_values is not None:
layer_kv = past_key_values.pop(0)
layer_past = tuple(s.to(x.device) for s in layer_kv)
else:
layer_past = None
if layer_type == 'a':
out, inter, k, v = block(x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb,
prev_attn, layer_mem, layer_past)
elif layer_type == 'c':
if exists(full_context):
out, inter, k, v = block(x, full_context[cross_attn_count], mask, context_mask, None, None,
None, prev_attn, None, layer_past)
else:
out, inter, k, v = block(x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past)
elif layer_type == 'f':
out = block(x)
if layer_type == 'a' or layer_type == 'c' and present_key_values is not None:
present_key_values.append((k.detach(), v.detach()))
if exists(post_branch_norm):
out = post_branch_norm(out, **norm_args)
x = residual_fn(out, residual)
if layer_type in ('a', 'c'):
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x, **norm_args)
if layer_type == 'c':
cross_attn_count += 1
if layer_type == 'f':
hiddens.append(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens=hiddens,
attn_intermediates=intermediates,
past_key_values=present_key_values
)
return x, intermediates
return x
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal=False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal=True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend=True, only_cross=True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
num_classes=None,
dropout=0.,
emb_dropout=0.
):
super().__init__()
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None
def forward(
self,
img,
return_embeddings=False
):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
x = self.patch_to_embedding(x)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.attn_layers(x)
x = self.norm(x)
if not exists(self.mlp_head) or return_embeddings:
return x
return self.mlp_head(x[:, 0])
class TransformerWrapper(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim=None,
max_mem_len=0.,
shift_mem_down=0,
emb_dropout=0.,
num_memory_tokens=None,
tie_embedding=False,
use_pos_emb=True
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.token_emb = nn.Embedding(num_tokens, emb_dim)
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.init_()
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
def init_(self):
nn.init.kaiming_normal_(self.token_emb.weight)
def forward(
self,
x,
return_embeddings=False,
mask=None,
return_hiddens=False,
return_attn=False,
mems=None,
use_cache=False,
**kwargs
):
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
x = self.token_emb(x)
x = x + self.pos_emb(x)
x = self.emb_dropout(x)
x = self.project_emb(x)
if num_mem > 0:
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
x = torch.cat((mem, x), dim=1)
# auto-handle masking after appending memory tokens
if exists(mask):
mask = F.pad(mask, (num_mem, 0), value=True)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
mems = [*mems_r, *mems_l]
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
x = self.norm(x)
mem, x = x[:, :num_mem], x[:, num_mem:]
out = self.to_logits(x) if not return_embeddings else x
if return_hiddens:
hiddens = intermediates.hiddens
return out, hiddens
res = [out]
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
res.append(attn_maps)
if use_cache:
res.append(intermediates.past_key_values)
if len(res) > 1:
return tuple(res)
return res[0]
class ContinuousTransformerWrapper(nn.Module):
def __init__(
self,
*,
max_seq_len,
attn_layers,
dim_in=None,
dim_out=None,
emb_dim=None,
emb_dropout=0.,
use_pos_emb=True
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
self.max_seq_len = max_seq_len
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if (
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
def forward(
self,
x,
return_embeddings=False,
mask=None,
return_attn=False,
mems=None,
use_cache=False,
**kwargs
):
b, n, _, device = *x.shape, x.device
x = self.project_in(x)
x = x + self.pos_emb(x)
x = self.emb_dropout(x)
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
x = self.norm(x)
out = self.project_out(x) if not return_embeddings else x
res = [out]
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
res.append(attn_maps)
if use_cache:
res.append(intermediates.past_key_values)
if len(res) > 1:
return tuple(res)
return res[0]
|