File size: 3,151 Bytes
f997af4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "final text_encoder_type: bert-base-uncased\n"
     ]
    },
    {
     "data": {
      "application/json": {
       "ascii": false,
       "bar_format": null,
       "colour": null,
       "elapsed": 0.014210224151611328,
       "initial": 0,
       "n": 0,
       "ncols": null,
       "nrows": null,
       "postfix": null,
       "prefix": "Downloading model.safetensors",
       "rate": null,
       "total": 440449768,
       "unit": "B",
       "unit_divisor": 1000,
       "unit_scale": true
      },
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5922f34578364d36afa13de9f01254bd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading model.safetensors:   0%|          | 0.00/440M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda3/lib/python3.8/site-packages/transformers/modeling_utils.py:881: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.\n",
      "  warnings.warn(\n",
      "/root/miniconda3/lib/python3.8/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
      "  warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from groundingdino.util.inference import load_model, load_image, predict, annotate\n",
    "import cv2\n",
    "\n",
    "model = load_model(\"groundingdino/config/GroundingDINO_SwinT_OGC.py\", \"../04-06-segment-anything/weights/groundingdino_swint_ogc.pth\")\n",
    "IMAGE_PATH = \".asset/cat_dog.jpeg\"\n",
    "TEXT_PROMPT = \"chair . person . dog .\"\n",
    "BOX_TRESHOLD = 0.35\n",
    "TEXT_TRESHOLD = 0.25\n",
    "\n",
    "image_source, image = load_image(IMAGE_PATH)\n",
    "\n",
    "boxes, logits, phrases = predict(\n",
    "    model=model,\n",
    "    image=image,\n",
    "    caption=TEXT_PROMPT,\n",
    "    box_threshold=BOX_TRESHOLD,\n",
    "    text_threshold=TEXT_TRESHOLD\n",
    ")\n",
    "\n",
    "annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)\n",
    "cv2.imwrite(\"annotated_image.jpg\", annotated_frame)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}