File size: 8,553 Bytes
e00f1e9
 
e59b5af
 
 
e00f1e9
176edaf
 
 
 
e59b5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr

import os
home = os.getcwd()
home

!git clone https://github.com/IDEA-Research/GroundingDINO
%cd /{home}/GroundingDINO   
!pip install -q -e .

text_prompt = 'basket'
image_path = '/kaggle/input/avataar/wall hanging.jpg'
output_image_path = '/kaggle/working'


'''Importing Libraries'''
import os

import groundingdino.datasets.transforms as T
import numpy as np
import torch
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.inference import predict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from huggingface_hub import hf_hub_download
from segment_anything import sam_model_registry
from segment_anything import SamPredictor

import cv2
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.utils import draw_bounding_boxes
from torchvision.utils import draw_segmentation_masks


def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
    '''
        Loads model from hugging face, we use it to get grounding dino model checkpoints
    '''
    cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)

    args = SLConfig.fromfile(cache_config_file) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    model.eval()
    return model  

def transform_image(image) -> torch.Tensor:
    transform = T.Compose([
#         T.RandomResize([800], max_size=1333),
        T.ToTensor(),
#         T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])

    image_transformed, _ = transform(image, None)
    return image_transformed



class CFG:
    '''
        Defines variables used in our code
    '''
    sam_type = "vit_h"
    SAM_MODELS = {
        "vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
        "vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
        "vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
    }
    device = 'cuda'
    ckpt_repo_id = "ShilongLiu/GroundingDINO"
    ckpt_filename = "groundingdino_swinb_cogcoor.pth"
    ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
#     image_path = os.path.join(os.getcwd(), 'fruits.jpg')
#     image_path = '/kaggle/input/avataar/wall hanging.jpg'
#     text_prompt = 'chair'



'''Build models'''
def build_sam():
    checkpoint_url = CFG.SAM_MODELS[CFG.sam_type]
    sam = sam_model_registry[CFG.sam_type]()
    state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)
    sam.load_state_dict(state_dict, strict=True)
    sam.to(device = CFG.device)
    sam = SamPredictor(sam)
    return sam


def build_groundingdino():
    ckpt_repo_id = CFG.ckpt_repo_id
    ckpt_filename = CFG.ckpt_filename
    ckpt_config_filename = CFG.ckpt_config_filename
    groundingdino = load_model_hf(ckpt_repo_id, ckpt_filename, ckpt_config_filename)
    return groundingdino

model_sam = build_sam()
model_groundingdino = build_groundingdino()


'''Predictions'''
def predict_dino(image_pil, text_prompt, box_threshold, text_threshold):
    image_trans = transform_image(image_pil)
    boxes, logits, phrases = predict(model = model_groundingdino,
                                     image = image_trans,
                                     caption = text_prompt,
                                     box_threshold = box_threshold,
                                     text_threshold = text_threshold,
                                     device = CFG.device)
    W, H = image_pil.size
    boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) # center cood to corner cood
    return boxes, logits, phrases


def predict_sam(image_pil, boxes):
    image_array = np.asarray(image_pil)
    model_sam.set_image(image_array)
    transformed_boxes = model_sam.transform.apply_boxes_torch(boxes, image_array.shape[:2])
    masks, _, _ = model_sam.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes.to(model_sam.device),
        multimask_output=False,
    )
    return masks.cpu()


def mask_predict(image_pil, text_prompt, box_threshold=0.3, text_threshold=0.25):
    boxes, logits, phrases = predict_dino(image_pil, text_prompt, box_threshold, text_threshold)
    masks = torch.tensor([])
    if len(boxes) > 0:
        masks = predict_sam(image_pil, boxes)
        masks = masks.squeeze(1)
    return masks, boxes, phrases, logits


'''Utils'''

def load_image(image_path):
    return Image.open(image_path).convert("RGB")


def draw_image(image_pil, masks, boxes, alpha=0.4):
    image = np.asarray(image_pil)
    image = torch.from_numpy(image).permute(2, 0, 1)
    if len(masks) > 0:
        image = draw_segmentation_masks(image, masks=masks, colors=['red'] * len(masks), alpha=alpha)
    return image.numpy().transpose(1, 2, 0)

image_pil = load_image(image_path)

masks, boxes, phrases, logits = mask_predict(image_pil, text_prompt=text_prompt, box_threshold=0.23, text_threshold=0.25)
output = draw_image(image_pil, masks, boxes, alpha=0.4)
# torch.save(masks, 'masks.pt')


'''Visualise segmented results'''

def visualize_results(img1, img2, task):
    fig, axes = plt.subplots(1, 2, figsize=(20, 10))

    axes[0].imshow(img1)
    axes[0].set_title('Original Image')

    axes[1].imshow(img2)
    axes[1].set_title(f'{text_prompt} : {task}')

    for ax in axes:
        ax.axis('off')

visualize_results(image_pil, output, 'segmented')


x_units = 200
y_units = -100
# import torch
# import numpy as np
# masks = torch.load('/kaggle/input/chair-mask/masks.pt')
# print(masks.shape)
# masks

def main_fun():

    '''Get masked object and background as two separate images'''
    mask = np.expand_dims(masks[0], axis=-1)
    masked_object = image_pil * mask
    background = image_pil * ~mask


    '''Shifts image by x_units and y_units'''
    M = np.float32([[1, 0, x_units], [0, 1, y_units]])
    shifted_image = cv2.warpAffine(masked_object, M, (masked_object.shape[1] , masked_object.shape[0] ), borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0))
    masked_shifted_image = np.where(shifted_image[:, :, 0] != 0, True, False)

    '''Load stable diffuser model at checkpoint finetuned for inpainting task'''
    from diffusers import StableDiffusionInpaintPipeline
    pipe = StableDiffusionInpaintPipeline.from_pretrained(
    #     "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
        "stabilityai/stable-diffusion-2-inpainting",torch_dtype=torch.float16)
    pipe.to(CFG.device)


    # With Dilation

    from scipy.ndimage import binary_dilation
    structuring_element = np.ones((15, 15, 1), dtype=bool)
    extrapolated_mask = binary_dilation(mask, structure=structuring_element)
    mask_as_uint8 = extrapolated_mask.astype(np.uint8) * 255
    pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L').resize((1024, 1024))
    # pil_mask

    # # Without Dilation
    # pil_background = Image.fromarray(background)
    # mask_as_uint8 = mask.astype(np.uint8) * 255
    # pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L')
    # # pil_mask

    '''Do inpainting on masked locations of original image'''
    prompt = 'a photo of background'
    inpainted_image = pipe(prompt=prompt, image=image_pil, mask_image=pil_mask).images[0]
    # inpainted_image

    '''Get composite of shifted object and background inpainted imaage'''
    pil_shifted_image = Image.fromarray(shifted_image).resize(inpainted_image.size)
    np_shifted_image = np.array(pil_shifted_image)
    masked_shifted_image = np.where(np_shifted_image[:, :, 0] != 0, True, False)
    masked_shifted_image = np.expand_dims(masked_shifted_image, axis=-1)
    inpainted_shifted = np.array(inpainted_image) * ~masked_shifted_image

    shifted_image = cv2.resize(shifted_image, inpainted_image.size)
    output = inpainted_shifted + shifted_image
    output = Image.fromarray(output)
    visualize_results(image_pil, output, 'shifted')



inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
    fn=main_fun,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Pothole detector",
    # examples=path,
    cache_examples=False,
)