File size: 5,753 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse, Usage

class BasetenError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs

def validate_environment(api_key):
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
    }
    if api_key:
        headers["Authorization"] = f"Api-Key {api_key}"
    return headers

def completion(
    model: str,
    messages: list,
    model_response: ModelResponse,
    print_verbose: Callable,
    encoding,
    api_key,
    logging_obj,
    optional_params=None,
    litellm_params=None,
    logger_fn=None,
):
    headers = validate_environment(api_key)
    completion_url_fragment_1 = "https://app.baseten.co/models/"
    completion_url_fragment_2 = "/predict"
    model = model
    prompt = ""
    for message in messages:
        if "role" in message:
            if message["role"] == "user":
                prompt += f"{message['content']}"
            else:
                prompt += f"{message['content']}"
        else:
            prompt += f"{message['content']}"
    data = {
        "inputs": prompt,
        "prompt": prompt,
        "parameters": optional_params,
        "stream": True if "stream" in optional_params and optional_params["stream"] == True else False
    }

    ## LOGGING
    logging_obj.pre_call(
            input=prompt,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
        )
    ## COMPLETION CALL
    response = requests.post(
        completion_url_fragment_1 + model + completion_url_fragment_2,
        headers=headers,
        data=json.dumps(data),
        stream=True if "stream" in optional_params and optional_params["stream"] == True else False
    )
    if 'text/event-stream' in response.headers['Content-Type'] or ("stream" in optional_params and optional_params["stream"] == True):
        return response.iter_lines()
    else:
        ## LOGGING
        logging_obj.post_call(
                input=prompt,
                api_key=api_key,
                original_response=response.text,
                additional_args={"complete_input_dict": data},
            )
        print_verbose(f"raw model_response: {response.text}")
        ## RESPONSE OBJECT
        completion_response = response.json()
        if "error" in completion_response:
            raise BasetenError(
                message=completion_response["error"],
                status_code=response.status_code,
            )
        else:
            if "model_output" in completion_response:
                if (
                    isinstance(completion_response["model_output"], dict)
                    and "data" in completion_response["model_output"]
                    and isinstance(
                        completion_response["model_output"]["data"], list
                    )
                ):
                    model_response["choices"][0]["message"][
                        "content"
                    ] = completion_response["model_output"]["data"][0]
                elif isinstance(completion_response["model_output"], str):
                    model_response["choices"][0]["message"][
                        "content"
                    ] = completion_response["model_output"]
            elif "completion" in completion_response and isinstance(
                completion_response["completion"], str
            ):
                model_response["choices"][0]["message"][
                    "content"
                ] = completion_response["completion"]
            elif isinstance(completion_response, list) and len(completion_response) > 0:
                if "generated_text" not in completion_response:
                    raise BasetenError(
                        message=f"Unable to parse response. Original response: {response.text}",
                        status_code=response.status_code
                    )
                model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
                ## GETTING LOGPROBS 
                if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
                    model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"]
                    sum_logprob = 0
                    for token in completion_response[0]["details"]["tokens"]:
                        sum_logprob += token["logprob"]
                    model_response["choices"][0]["message"]._logprobs = sum_logprob
            else:
                raise BasetenError(
                    message=f"Unable to parse response. Original response: {response.text}",
                    status_code=response.status_code
                )

        ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
        prompt_tokens = len(encoding.encode(prompt))
        completion_tokens = len(
            encoding.encode(model_response["choices"][0]["message"]["content"])
        )

        model_response["created"] = int(time.time())
        model_response["model"] = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens
        )
        model_response.usage = usage
        return model_response

def embedding():
    # logic for parsing in - calling - parsing out model embedding calls
    pass