File size: 10,271 Bytes
c101c53
0614630
c101c53
 
c76addc
c101c53
 
 
 
 
 
0614630
 
c76addc
 
c101c53
0614630
c101c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0614630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c76addc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import List
from typing import AnyStr
from haystack import component
import pandas as pd
from pandasql import sqldf
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)
import sqlite3
import psycopg2
from pymongo import MongoClient
import pymongoarrow.monkey
import json
import pluck
from utils import TEMP_DIR
import ast

@component
class SQLiteQuery:

    def __init__(self, sql_database: str):
      self.connection = sqlite3.connect(sql_database, check_same_thread=False)

    @component.output_types(results=List[str], queries=List[str])
    def run(self, queries: List[str], session_hash):
        print("ATTEMPTING TO RUN SQLITE QUERY")
        dir_path = TEMP_DIR / str(session_hash)
        results = []
        for query in queries:
          result = pd.read_sql(query, self.connection)
          result.to_csv(f'{dir_path}/file_upload/query.csv', index=False)
          results.append(f"{result}")
        self.connection.close()
        return {"results": results, "queries": queries}
    


def sqlite_query_func(queries: List[str], session_hash, **kwargs):
    dir_path = TEMP_DIR / str(session_hash)
    sql_query = SQLiteQuery(f'{dir_path}/file_upload/data_source.db')
    try:
      result = sql_query.run(queries, session_hash)
      if len(result["results"][0]) > 1000:
        print("QUERY TOO LARGE")
        return {"reply": "query result too large to be processed by llm, the query results are in our query.csv file. If you need to display the results directly, perhaps use the table_generation_func function."}
      else:   
        return {"reply": result["results"][0]}

    except Exception as e:
      reply = f"""There was an error running the SQL Query = {queries}

              The error is {e},

              You should probably try again.

              """
      return {"reply": reply}
    
@component
class PostgreSQLQuery:

    def __init__(self, url: str, sql_port: int, sql_user: str, sql_pass: str, sql_db_name: str):
      self.connection = psycopg2.connect(
            database=sql_db_name,
            user=sql_user,
            password=sql_pass,
            host=url,  # e.g., "localhost" or an IP address
            port=sql_port  # default is 5432
        )

    @component.output_types(results=List[str], queries=List[str])
    def run(self, queries: List[str], session_hash):
        print("ATTEMPTING TO RUN POSTGRESQL QUERY")
        dir_path = TEMP_DIR / str(session_hash)
        results = []
        for query in queries:
          print(query)
          result = pd.read_sql_query(query, self.connection)
          result.to_csv(f'{dir_path}/sql/query.csv', index=False)
          results.append(f"{result}")
        self.connection.close()
        return {"results": results, "queries": queries}
    


def sql_query_func(queries: List[str], session_hash, db_url, db_port, db_user, db_pass, db_name, **kwargs):
    sql_query = PostgreSQLQuery(db_url, db_port, db_user, db_pass, db_name)
    try:
      result = sql_query.run(queries, session_hash)
      print("RESULT")
      print(result)
      if len(result["results"][0]) > 1000:
        print("QUERY TOO LARGE")
        return {"reply": "query result too large to be processed by llm, the query results are in our query.csv file. If you need to display the results directly, perhaps use the table_generation_func function."}
      else:   
        return {"reply": result["results"][0]}

    except Exception as e:
      reply = f"""There was an error running the SQL Query = {queries}

              The error is {e},

              You should probably try again.

              """
      print(reply)
      return {"reply": reply}

@component
class DocDBQuery:

    def __init__(self, connection_string: str, doc_db_name: str):
      client = MongoClient(connection_string)

      self.client = client
      self.connection = client[doc_db_name]

    @component.output_types(results=List[str], queries=List[str])
    def run(self, aggregation_pipeline: List[str], db_collection,  session_hash):
        pymongoarrow.monkey.patch_all()
        print("ATTEMPTING TO RUN MONGODB QUERY")
        dir_path = TEMP_DIR / str(session_hash)
        results = []
        print(aggregation_pipeline)

        aggregation_pipeline = aggregation_pipeline.replace(" ", "")

        false_replace = [':false', ': false']
        false_value = ':False'   
        true_replace = [':true', ': true']
        true_value = ':True'

        for replace in false_replace:
            aggregation_pipeline = aggregation_pipeline.replace(replace, false_value)
        for replace in true_replace:
            aggregation_pipeline = aggregation_pipeline.replace(replace, true_value)

        query_list = ast.literal_eval(aggregation_pipeline)

        print("QUERY List")
        print(query_list)
        print(db_collection)
        
        db = self.connection
        collection = db[db_collection]

        print(collection)
        docs = collection.aggregate_pandas_all(query_list)
        print("DATA FRAME COMPLETE")
        docs.to_csv(f'{dir_path}/doc_db/query.csv', index=False)
        print("CSV COMPLETE")
        results.append(f"{docs}") 
        self.client.close()
        return {"results": results, "queries": aggregation_pipeline}
    


def doc_db_query_func(aggregation_pipeline: List[str], db_collection: AnyStr, session_hash, connection_string, doc_db_name, **kwargs):
    doc_db_query = DocDBQuery(connection_string, doc_db_name)
    try:
      result = doc_db_query.run(aggregation_pipeline, db_collection, session_hash)
      print("RESULT")
      if len(result["results"][0]) > 1000:
        print("QUERY TOO LARGE")
        return {"reply": "query result too large to be processed by llm, the query results are in our query.csv file. If you need to display the results directly, perhaps use the table_generation_func function."}
      else:   
        return {"reply": result["results"][0]}

    except Exception as e:
      reply = f"""There was an error running the NoSQL (Mongo) Query = {aggregation_pipeline}

              The error is {e},

              You should probably try again.

              """
      print(reply)
      return {"reply": reply}
    
@component
class GraphQLQuery:

    def __init__(self):

      self.connection = pluck

    @component.output_types(results=List[str], queries=List[str])
    def run(self, graphql_query, graphql_api_string, graphql_api_token, graphql_token_header, session_hash):
        print("ATTEMPTING TO RUN GRAPHQL QUERY")
        dir_path = TEMP_DIR / str(session_hash)
        results = []

        headers = {"Content-Type": "application/json"}
        if graphql_token_header and graphql_api_token:
          headers[graphql_token_header] = graphql_api_token

        print(graphql_query)

        response = self.connection.execute(url=graphql_api_string, headers=headers, query=graphql_query, column_names="short")

        if response.errors:
           raise ValueError(response.errors)
        elif response.data:
          print("DATA FRAME COMPLETE")
          print(response)
          response_frame = response.frames['default']
          print("RESPONSE FRAME")
          #print(response_frame)

          response_frame.to_csv(f'{dir_path}/graphql/query.csv', index=False)
          print("CSV COMPLETE")
          results.append(f"{response_frame}") 
          return {"results": results, "queries": graphql_query}
    


def graphql_query_func(graphql_query: AnyStr, session_hash, graphql_api_string, graphql_api_token, graphql_token_header, **kwargs):
    graphql_object = GraphQLQuery()
    try:
      result = graphql_object.run(graphql_query, graphql_api_string, graphql_api_token, graphql_token_header, session_hash)
      print("RESULT")
      if len(result["results"][0]) > 1000:
        print("QUERY TOO LARGE")
        return {"reply": "query result too large to be processed by llm, the query results are in our query.csv file. If you need to display the results directly, perhaps use the table_generation_func function."}
      else:   
        return {"reply": result["results"][0]}

    except Exception as e:
      reply = f"""There was an error running the GraphQL Query = {graphql_query}

              The error is {e},

              You should probably try again.

              """
      print(reply)
      return {"reply": reply}
    
def graphql_schema_query(graphql_type: AnyStr, session_hash, **kwargs):
    dir_path = TEMP_DIR / str(session_hash)
    try:
      with open(f'{dir_path}/graphql/schema.json', 'r') as file:
        data = json.load(file)

      types_list = data["types"]
      result = list(filter(lambda item: item["name"] == graphql_type, types_list))

      print("SCHEMA RESULT")
      print(graphql_type)
      print(str(result))

      return {"reply": str(result)}

    except Exception as e:
      reply = f"""There was an error querying our schema.json file with the type:{graphql_type}

              The error is {e},

              You should probably try again.

              """
      print(reply)
      return {"reply": reply}

def graphql_csv_query(csv_query: AnyStr, session_hash, **kwargs):
    dir_path = TEMP_DIR / str(session_hash)
    try:
      query = pd.read_csv(f'{dir_path}/graphql/query.csv')
      query.Name = 'query'
      print("GRAPHQL CSV QUERY")
      queried_df = sqldf(csv_query, locals())
      print(queried_df)
      queried_df.to_csv(f'{dir_path}/graphql/query.csv', index=False)

      return {"reply": "The new query results are in our query.csv file. If you need to display the results directly, perhaps use the table_generation_func function."}

    except Exception as e:
      reply = f"""There was an error querying our query.csv file with the query:{csv_query}

              The error is {e},

              You should probably try again.

              """
      print(reply)
      return {"reply": reply}