selfmask / networks /vision_transformer.py
noelshin's picture
Add application file
35188e4
raw
history blame
20.6 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from typing import Optional
import math
from functools import partial
import torch
import torch.nn as nn
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.",
stacklevel=2
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5 # square root of dimension for normalisation
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape # B x (cls token + # patch tokens) x dim
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh)
q, k, v = qkv[0], qkv[1], qkv[2]
# q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh)
# q: B x Nh x (cls token + # patch tokens) x (dim // Nh)
# k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens)
# attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
attn = (q @ k.transpose(-2, -1)) * self.scale # @ operator is for matrix multiplication
attn = attn.softmax(dim=-1) # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
attn = self.attn_drop(attn)
# attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
# v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
# attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
# (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # B x (cls token + # patch tokens) x dim
x = self.proj(x) # B x (cls token + # patch tokens) x dim
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self,
dim, num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding"""
def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # B x (P_H * P_W) x C
return x
class VisionTransformer(nn.Module):
""" Vision Transformer """
def __init__(self,
img_size=(224, 224),
patch_size=16,
in_chans=3,
num_classes=0,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=(224, 224), # noel: this is to load pretrained model.
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.depth = depth
self.embed_dim = self.n_embs = embed_dim
self.mlp_ratio = mlp_ratio
self.n_heads = num_heads
self.patch_size = patch_size
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor:
"""Pad some pixels to make the input size divisible by the patch size."""
B, _, H_0, W_0 = x.shape
pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size
pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0)
return x
def prepare_tokens(self, x):
B, nc, h, w = x.shape
x: torch.Tensor = self.make_input_divisible(x)
patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = self.patch_embed(x) # patch linear embedding
# add positional encoding to each token
# add the [CLS] token to the embed patch tokens
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w))
return self.pos_drop(x)
@staticmethod
def split_token(x, token_type: str):
if token_type == "cls":
return x[:, 0, :]
elif token_type == "patch":
return x[:, 1:, :]
else:
return x
# noel
def forward(self, x, layer: Optional[str] = None):
x: torch.Tensor = self.prepare_tokens(x)
features: dict = {}
for i, blk in enumerate(self.blocks):
x = blk(x)
features[f"layer{i + 1}"] = self.norm(x)
if layer is not None:
return features[layer]
else:
return features
# noel - for DINO's visual
def get_last_selfattention(self, x):
x = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
# return attention of the last block
return blk(x, return_attention=True)
def get_tokens(
self,
x,
layers: list,
patch_tokens: bool = False,
norm: bool = True,
input_tokens: bool = False,
post_pe: bool = False
):
"""Return intermediate tokens."""
list_tokens: list = []
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if input_tokens:
list_tokens.append(x)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
if post_pe:
list_tokens.append(x)
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x) # B x # patches x dim
if layers is None or i in layers:
list_tokens.append(self.norm(x) if norm else x)
tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim
if not patch_tokens:
return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim
else:
return tokens
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
return x[:, 0]
def interpolate_pos_encoding(self, x, pos_embed, size):
"""Interpolate the learnable positional encoding to match the number of patches.
x: B x (1 + N patches) x dim_embedding
pos_embed: B x (1 + N patches) x dim_embedding
return interpolated positional embedding
"""
npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size)
N = pos_embed.shape[1] - 1 # 784 (= 28 x 28)
if npatch == N:
return pos_embed
class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings
dim = x.shape[-1] # dimension of embeddings
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28
size=size,
mode='bicubic',
align_corners=False
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
return pos_embed
def forward_selfattention(self, x, return_interm_attn=False):
B, nc, w, h = x.shape
N = self.pos_embed.shape[1] - 1
x = self.patch_embed(x)
# interpolate patch embeddings
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic'
)
if w0 != patch_pos_embed.shape[-2]:
helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
if h0 != patch_pos_embed.shape[-1]:
helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
cls_tokens = self.cls_token.expand(B, -1, -1) # self.cls_token: 1 x 1 x emb_dim -> ?
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
if return_interm_attn:
list_attn = []
for i, blk in enumerate(self.blocks):
attn = blk(x, return_attention=True)
x = blk(x)
list_attn.append(attn)
return torch.cat(list_attn, dim=0)
else:
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
return blk(x, return_attention=True)
def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
# get only CLS token (B x dim)
output.append(self.norm(x)[:, 0])
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.cat(output, dim=-1)
def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
"""Return intermediate patch embeddings, rather than CLS token, from the last n blocks."""
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x)[:, 1:]) # get only CLS token (B x dim)
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.stack(output, dim=-1) # B x n_patches x dim x n
def deit_tiny(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def deit_small(patch_size=16, **kwargs):
depth = kwargs.pop("depth") if "depth" in kwargs else 12
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=depth,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def vit_base(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
super().__init__()
nlayers = max(nlayers, 1)
if nlayers == 1:
self.mlp = nn.Linear(in_dim, bottleneck_dim)
else:
layers = [nn.Linear(in_dim, hidden_dim)]
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
self.mlp = nn.Sequential(*layers)
self.apply(self._init_weights)
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.mlp(x)
x = nn.functional.normalize(x, dim=-1, p=2)
x = self.last_layer(x)
return x