Spaces:
Runtime error
Runtime error
""" Vision Transformer (ViT) in PyTorch | |
A PyTorch implement of Vision Transformers as described in | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
DeiT model defs and weights from https://github.com/facebookresearch/deit, | |
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import math | |
import logging | |
from functools import partial | |
from collections import OrderedDict | |
from copy import deepcopy | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timm.models.helpers import build_model_with_cfg, overlay_external_default_cfg | |
from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_ | |
from timm.models.registry import register_model | |
_logger = logging.getLogger(__name__) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models (my experiments) | |
'vit_small_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', | |
), | |
# patch models (weights ported from official Google JAX impl) | |
'vit_base_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
'vit_base_patch32_224': _cfg( | |
url='', # no official model weights for this combo, only for in21k | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_base_patch16_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', | |
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), | |
'vit_base_patch32_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth', | |
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), | |
'vit_large_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_large_patch32_224': _cfg( | |
url='', # no official model weights for this combo, only for in21k | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_large_patch16_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', | |
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), | |
'vit_large_patch32_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', | |
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), | |
# patch models, imagenet21k (weights ported from official Google JAX impl) | |
'vit_base_patch16_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth', | |
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_base_patch32_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth', | |
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_large_patch16_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth', | |
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_large_patch32_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', | |
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
'vit_huge_patch14_224_in21k': _cfg( | |
hf_hub='timm/vit_huge_patch14_224_in21k', | |
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
# deit models (FB weights) | |
'vit_deit_tiny_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), | |
'vit_deit_small_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), | |
'vit_deit_base_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',), | |
'vit_deit_base_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_deit_tiny_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', | |
classifier=('head', 'head_dist')), | |
'vit_deit_small_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', | |
classifier=('head', 'head_dist')), | |
'vit_deit_base_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', | |
classifier=('head', 'head_dist')), | |
'vit_deit_base_distilled_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')), | |
# ViT ImageNet-21K-P pretraining | |
'vit_base_patch16_224_miil_in21k': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, | |
), | |
'vit_base_patch16_224_miil': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm' | |
'/vit_base_patch16_224_1k_miil_84_4.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', | |
), | |
} | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` | |
- https://arxiv.org/abs/2012.12877 | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, distilled=False, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, | |
act_layer=None, weight_init='', | |
# noel | |
img_size_eval: int = 224): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
qk_scale (float): override default qk scale of head_dim ** -0.5 if set | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
distilled (bool): model includes a distillation token and head as in DeiT models | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
weight_init: (str): weight init scheme | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 2 if distilled else 1 | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Representation layer | |
if representation_size and not distilled: | |
self.num_features = representation_size | |
self.pre_logits = nn.Sequential(OrderedDict([ | |
('fc', nn.Linear(embed_dim, representation_size)), | |
('act', nn.Tanh()) | |
])) | |
else: | |
self.pre_logits = nn.Identity() | |
# Classifier head(s) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = None | |
if distilled: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
# Weight init | |
assert weight_init in ('jax', 'jax_nlhb', 'nlhb', '') | |
head_bias = -math.log(self.num_classes) if 'nlhb' in weight_init else 0. | |
trunc_normal_(self.pos_embed, std=.02) | |
if self.dist_token is not None: | |
trunc_normal_(self.dist_token, std=.02) | |
if weight_init.startswith('jax'): | |
# leave cls token as zeros to match jax impl | |
for n, m in self.named_modules(): | |
_init_vit_weights(m, n, head_bias=head_bias, jax_impl=True) | |
else: | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(_init_vit_weights) | |
# noel | |
self.depth = depth | |
self.distilled = distilled | |
self.patch_size = patch_size | |
self.patch_embed.img_size = (img_size_eval, img_size_eval) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
_init_vit_weights(m) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'dist_token'} | |
def get_classifier(self): | |
if self.dist_token is None: | |
return self.head | |
else: | |
return self.head, self.head_dist | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.num_tokens == 2: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if self.dist_token is None: | |
x = torch.cat((cls_token, x), dim=1) | |
else: | |
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.pos_drop(x + self.pos_embed) | |
x = self.blocks(x) | |
x = self.norm(x) | |
if self.dist_token is None: | |
return self.pre_logits(x[:, 0]) | |
else: | |
return x[:, 0], x[:, 1] | |
# def forward(self, x): | |
# x = self.forward_features(x) | |
# if self.head_dist is not None: | |
# x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple | |
# if self.training and not torch.jit.is_scripting(): | |
# # during inference, return the average of both classifier predictions | |
# return x, x_dist | |
# else: | |
# return (x + x_dist) / 2 | |
# else: | |
# x = self.head(x) | |
# return x | |
# noel - start | |
def make_square(self, x: torch.Tensor): | |
"""Pad some pixels to make the input size divisible by the patch size.""" | |
B, _, H_0, W_0 = x.shape | |
pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size | |
pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size | |
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=x.mean()) | |
H_p, W_p = H_0 + pad_h, W_0 + pad_w | |
x = nn.functional.pad(x, (0, H_p - W_p, 0, 0) if H_p > W_p else (0, 0, 0, W_p - H_p), value=x.mean()) | |
return x | |
def interpolate_pos_encoding(self, x, pos_embed, size): | |
"""Interpolate the learnable positional encoding to match the number of patches. | |
x: B x (1 + N patches) x dim_embedding | |
pos_embed: B x (1 + N patches) x dim_embedding | |
return interpolated positional embedding | |
""" | |
npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size) | |
N = pos_embed.shape[1] - 1 # 784 (= 28 x 28) | |
if npatch == N: | |
return pos_embed | |
class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings | |
dim = x.shape[-1] # dimension of embeddings | |
pos_embed = nn.functional.interpolate( | |
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 | |
size=size, | |
mode='bicubic', | |
align_corners=False | |
) | |
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) | |
return pos_embed | |
# def interpolate_pos_encoding(self, x, pos_embed): | |
# """Interpolate the learnable positional encoding to match the number of patches. | |
# | |
# x: B x (1 + N patches) x dim_embedding | |
# pos_embed: B x (1 + N patches) x dim_embedding | |
# | |
# return interpolated positional embedding | |
# """ | |
# npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size) | |
# N = pos_embed.shape[1] - 1 # 784 (= 28 x 28) | |
# if npatch == N: | |
# return pos_embed | |
# class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings | |
# | |
# dim = x.shape[-1] # dimension of embeddings | |
# pos_embed = nn.functional.interpolate( | |
# pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 | |
# scale_factor=math.sqrt(npatch / N) + 1e-5, # noel: this can be a float, but the output shape will be integer. | |
# recompute_scale_factor=True, | |
# mode='bicubic', | |
# align_corners=False | |
# ) | |
# | |
# pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
# pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) | |
# return pos_embed | |
def prepare_tokens(self, x): | |
B, nc, h, w = x.shape | |
patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
x = self.patch_embed(x) # patch linear embedding | |
# add the [CLS] token to the embed patch tokens | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
# add positional encoding to each token | |
x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w)) | |
return self.pos_drop(x) | |
def get_tokens( | |
self, | |
x, | |
layers: list, | |
patch_tokens: bool = False, | |
norm: bool = True, | |
input_tokens: bool = False, | |
post_pe: bool = False | |
): | |
"""Return intermediate tokens.""" | |
list_tokens: list = [] | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
if input_tokens: | |
list_tokens.append(x) | |
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) | |
x = x + pos_embed | |
if post_pe: | |
list_tokens.append(x) | |
x = self.pos_drop(x) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) # B x # patches x dim | |
if layers is None or i in layers: | |
list_tokens.append(self.norm(x) if norm else x) | |
tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim | |
if not patch_tokens: | |
return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim | |
else: | |
return tokens | |
def forward(self, x, layer: str = None): | |
x = self.prepare_tokens(x) | |
features: dict = {} | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
features[f"layer{i + 1}"] = self.norm(x) | |
if layer is not None: | |
return features[layer] | |
else: | |
return features["layer12"] | |
# noel - end | |
def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = False): | |
""" ViT weight initialization | |
* When called without n, head_bias, jax_impl args it will behave exactly the same | |
as my original init for compatibility with prev hparam / downstream use cases (ie DeiT). | |
* When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl | |
""" | |
if isinstance(m, nn.Linear): | |
if n.startswith('head'): | |
nn.init.zeros_(m.weight) | |
nn.init.constant_(m.bias, head_bias) | |
elif n.startswith('pre_logits'): | |
lecun_normal_(m.weight) | |
nn.init.zeros_(m.bias) | |
else: | |
if jax_impl: | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
if 'mlp' in n: | |
nn.init.normal_(m.bias, std=1e-6) | |
else: | |
nn.init.zeros_(m.bias) | |
else: | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif jax_impl and isinstance(m, nn.Conv2d): | |
# NOTE conv was left to pytorch default in my original init | |
lecun_normal_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.zeros_(m.bias) | |
nn.init.ones_(m.weight) | |
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()): | |
# Rescale the grid of position embeddings when loading from state_dict. Adapted from | |
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 | |
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) | |
ntok_new = posemb_new.shape[1] | |
if num_tokens: | |
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] | |
ntok_new -= num_tokens | |
else: | |
posemb_tok, posemb_grid = posemb[:, :0], posemb[0] | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
if not len(gs_new): # backwards compatibility | |
gs_new = [int(math.sqrt(ntok_new))] * 2 | |
assert len(gs_new) >= 2 | |
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear') | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def checkpoint_filter_fn(state_dict, model): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
if 'model' in state_dict: | |
# For deit models | |
state_dict = state_dict['model'] | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k and len(v.shape) < 4: | |
# For old models that I trained prior to conv based patchification | |
O, I, H, W = model.patch_embed.proj.weight.shape | |
v = v.reshape(O, -1, H, W) | |
elif k == 'pos_embed' and v.shape != model.pos_embed.shape: | |
# To resize pos embedding when using model at different size from pretrained weights | |
v = resize_pos_embed( | |
v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) | |
out_dict[k] = v | |
return out_dict | |
def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs): | |
default_cfg = default_cfg or default_cfgs[variant] | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
# NOTE this extra code to support handling of repr size for in21k pretrained models | |
default_num_classes = default_cfg['num_classes'] | |
num_classes = kwargs.get('num_classes', default_num_classes) | |
repr_size = kwargs.pop('representation_size', None) | |
if repr_size is not None and num_classes != default_num_classes: | |
# Remove representation layer if fine-tuning. This may not always be the desired action, | |
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? | |
_logger.warning("Removing representation layer for fine-tuning.") | |
repr_size = None | |
model = build_model_with_cfg( | |
VisionTransformer, variant, pretrained, | |
default_cfg=default_cfg, | |
representation_size=repr_size, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def vit_small_patch16_224(pretrained=False, **kwargs): | |
""" My custom 'small' ViT model. embed_dim=768, depth=8, num_heads=8, mlp_ratio=3. | |
NOTE: | |
* this differs from the DeiT based 'small' definitions with embed_dim=384, depth=12, num_heads=6 | |
* this model does not have a bias for QKV (unlike the official ViT and DeiT models) | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3., | |
qkv_bias=False, norm_layer=nn.LayerNorm, **kwargs) | |
if pretrained: | |
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model | |
model_kwargs.setdefault('qk_scale', 768 ** -0.5) | |
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict( | |
patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict( | |
patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: converted weights not currently available, too large for github release hosting. | |
""" | |
model_kwargs = dict( | |
patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs) | |
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_deit_tiny_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_deit_small_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_deit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_deit_base_patch16_224(pretrained=False, **kwargs): | |
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_deit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_deit_base_patch16_384(pretrained=False, **kwargs): | |
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_deit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer( | |
'vit_deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def vit_deit_small_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer( | |
'vit_deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def vit_deit_base_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'vit_deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def vit_deit_base_distilled_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'vit_deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs) | |
return model |