File size: 6,666 Bytes
85e9f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader

from models.blip_pretrain import blip_pretrain
import utils
from utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader

def train(model, data_loader, optimizer, epoch, device, config):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
    metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
    metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))    
    metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
    
    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50   

    if config['laion_path']:
        data_loader.dataset.reload_laion(epoch)
    
    data_loader.sampler.set_epoch(epoch)

    for i, (image, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        
        if epoch==0:
            warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
            
        optimizer.zero_grad()
        
        image = image.to(device,non_blocking=True)
        
        # ramp up alpha in the first 2 epochs
        alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader))) 

        loss_ita, loss_itm, loss_lm = model(image, caption, alpha = alpha)  
        loss = loss_ita + loss_itm + loss_lm  

        loss.backward()
        optimizer.step()    

        metric_logger.update(loss_ita=loss_ita.item())
        metric_logger.update(loss_itm=loss_itm.item())
        metric_logger.update(loss_lm=loss_lm.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])  

        
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}  


def main(args, config):
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True

    #### Dataset #### 
    print("Creating dataset")
    datasets = [create_dataset('pretrain', config, min_scale=0.2)]
    print('number of training samples: %d'%len(datasets[0]))

    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()            
    samplers = create_sampler(datasets, [True], num_tasks, global_rank)         

    data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]      

    #### Model #### 
    print("Creating model")
    model = blip_pretrain(image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], 
                            vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'])

    model = model.to(device)   

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
    
    start_epoch = 0
    if args.checkpoint:    
        checkpoint = torch.load(args.checkpoint, map_location='cpu') 
        state_dict = checkpoint['model']    
        model.load_state_dict(state_dict)    
        
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch']+1                
        print('resume checkpoint from %s'%args.checkpoint)    
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
        
    print("Start training")
    start_time = time.time()    
    for epoch in range(start_epoch, config['max_epoch']):
        
        step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
                
        train_stats = train(model, data_loader, optimizer, epoch, device, config) 
        if utils.is_main_process():  
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                        }                     
            save_obj = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'config': config,
                'epoch': epoch,
            }
            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))  
            
            with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                f.write(json.dumps(log_stats) + "\n")

        dist.barrier()        
                
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/pretrain.yaml')
    parser.add_argument('--output_dir', default='output/Pretrain')  
    parser.add_argument('--checkpoint', default='')    
    parser.add_argument('--evaluate', action='store_true')    
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)