File size: 1,632 Bytes
85e9f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import json
import os
import random
from torch.utils.data import Dataset
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
from data.utils import pre_caption
import os,glob
class pretrain_dataset(Dataset):
def __init__(self, ann_file, laion_path, transform):
self.ann_pretrain = []
for f in ann_file:
print('loading '+f)
ann = json.load(open(f,'r'))
self.ann_pretrain += ann
self.laion_path = laion_path
if self.laion_path:
self.laion_files = glob.glob(os.path.join(laion_path,'*.json'))
print('loading '+self.laion_files[0])
with open(self.laion_files[0],'r') as f:
self.ann_laion = json.load(f)
self.annotation = self.ann_pretrain + self.ann_laion
else:
self.annotation = self.ann_pretrain
self.transform = transform
def reload_laion(self, epoch):
n = epoch%len(self.laion_files)
print('loading '+self.laion_files[n])
with open(self.laion_files[n],'r') as f:
self.ann_laion = json.load(f)
self.annotation = self.ann_pretrain + self.ann_laion
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image = Image.open(ann['image']).convert('RGB')
image = self.transform(image)
caption = pre_caption(ann['caption'],30)
return image, caption |