File size: 12,349 Bytes
4505891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, jaccard_score, hamming_loss
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
import xgboost as xgb
from sklearn.metrics import precision_score, recall_score, f1_score
import warnings
import joblib
import random
import os
import torch
import tensorflow as tf


def set_all_seeds(seed=42):
    """Set all seeds to make results reproducible"""
    random.seed(seed)  # Python
    np.random.seed(seed)  # Numpy
    random.seed(seed)  # Sklearn
    tf.random.set_seed(seed)  # Tensorflow
    torch.manual_seed(seed)  # Torch
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)  # Environment


class MultiLabelThresholdOptimizer:
    def __init__(self, n_splits=5, random_state=42):
        self.n_splits = n_splits
        self.random_state = random_state
        self.optimal_thresholds = {}

    def find_optimal_thresholds(self, y_true, y_pred_proba):
        """Find optimal threshold for each label using F1 score"""
        n_labels = y_true.shape[1]
        thresholds = np.zeros(n_labels)

        for label in range(n_labels):
            best_f1 = 0
            best_threshold = 0.5

            # Use fixed thresholds to ensure reproducibility
            for threshold in np.arange(0.1, 0.9, 0.05):
                y_pred = (y_pred_proba[:, label] >= threshold).astype(int)
                f1 = f1_score(y_true[:, label], y_pred, zero_division=0)

                if f1 > best_f1:
                    best_f1 = f1
                    best_threshold = threshold

            thresholds[label] = best_threshold

        return thresholds

    def fit(self, X, y, model, model_name):
        """Find and save optimal thresholds using cross validation"""
        kf = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=self.random_state)
        fold_thresholds = []

        for train_idx, val_idx in kf.split(X, y[:, 0]):
            X_val = X[val_idx]
            y_val = y[val_idx]

            if isinstance(X, np.ndarray):
                y_pred_proba = model.predict_proba(X_val)
            else:
                y_pred_proba = model.predict_proba(X_val)

            fold_thresholds.append(self.find_optimal_thresholds(y_val, y_pred_proba))

        final_thresholds = np.median(fold_thresholds, axis=0)
        self.optimal_thresholds[model_name] = final_thresholds

        return final_thresholds

    def predict(self, model, X, model_name):
        if model_name not in self.optimal_thresholds:
            raise ValueError(f"No thresholds found for model: {model_name}")

        if isinstance(X, np.ndarray):
            y_pred_proba = model.predict_proba(X)
        else:
            y_pred_proba = model.predict_proba(X)

        thresholds = self.optimal_thresholds[model_name]
        y_pred = np.zeros_like(y_pred_proba)

        for label in range(y_pred_proba.shape[1]):
            y_pred[:, label] = (y_pred_proba[:, label] >= thresholds[label]).astype(int)

        return y_pred


def compare_models(results):
    """ Compare models across all metrics and provide rankings.

    Now includes rankings for:

    - Precision

    - Recall

    - F1 Score

    - Subset Accuracy

    - Hamming Accuracy

    - Jaccard Score """
    metrics = ['precision', 'recall', 'f1', 'subset_accuracy', 'hamming_accuracy', 'jaccard_score']
    rankings = {metric: {} for metric in metrics}

    # Rank models for each metric
    for metric in metrics:
        sorted_models = sorted(results.items(), key=lambda x: x[1][metric], reverse=True)
        for rank, (model_name, _) in enumerate(sorted_models, 1):
            rankings[metric][model_name] = rank

    # Compute average ranking across all metrics
    average_rankings = {}
    for model_name in results.keys():
        model_ranks = [rankings[metric][model_name] for metric in metrics]
        average_rankings[model_name] = sum(model_ranks) / len(metrics)

    # Sort models by average ranking (lower is better)
    final_ranking = sorted(average_rankings.items(), key=lambda x: x[1])

    # Print detailed comparison
    print("\n๐Ÿ† Model Comparison Results:")
    print("\n๐Ÿ“Š Detailed Metrics and Rankings:")
    headers = ['Model', 'Precision', 'Recall', 'F1 Score', 'Subset Acc', 'Hamming Acc', 'Jaccard', 'Avg Rank']
    print('-' * 120)
    print(f"{headers[0]:<24} {headers[1]:<12} {headers[2]:<11} {headers[3]:<10} {headers[4]:<10} {headers[5]:<12} {headers[6]:<10} {headers[7]:<8}")
    print('-' * 120)

    for model_name in results.keys():
        metrics = results[model_name]
        print(f"{model_name:<20} "
              f"{metrics['precision']:>11.3f} "
              f"{metrics['recall']:>11.3f} "
              f"{metrics['f1']:>11.3f} "
              f"{metrics['subset_accuracy']:>11.3f} "
              f"{metrics['hamming_accuracy']:>11.3f} "
              f"{metrics['jaccard_score']:>11.3f} "
              f"{average_rankings[model_name]:>8.2f}")

    print('-' * 120)

    # Print final rankings
    print("\n๐ŸŽฏ Final Model Rankings (based on average performance across all metrics):")
    for rank, (model_name, avg_rank) in enumerate(final_ranking, 1):
        print(f"{rank}. {model_name:<20} (Average Rank: {avg_rank:.2f})")

    # Identify best model
    best_model = final_ranking[0][0]
    print(f"\n๐Ÿฅ‡ Best Overall Model: {best_model}")
    print("\n๐Ÿ“Œ Detailed strengths of the best model:")
    print(f"   - Precision: {results[best_model]['precision']:.3f}")
    print(f"   - Recall: {results[best_model]['recall']:.3f}")
    print(f"   - F1 Score: {results[best_model]['f1']:.3f}")
    print(f"   - Subset Accuracy: {results[best_model]['subset_accuracy']:.3f}")
    print(f"   - Hamming Accuracy: {results[best_model]['hamming_accuracy']:.3f}")
    print(f"   - Jaccard Score: {results[best_model]['jaccard_score']:.3f}")

    return best_model, results[best_model]


def save_best_model_info(best_model_name, model_metrics, threshold):
    """ Save information about the best model """
    best_model_info = {
        'model_name': best_model_name,
        'metrics': model_metrics,
        'threshold': threshold
    }
    joblib.dump(best_model_info, 'best_model_related_topics_info.pkl')


def evaluate_model_related(y_test, y_pred, model_name):
    """Evaluate model performance with additional accuracy metrics"""
    precision_weighted = precision_score(y_test, y_pred, average='weighted', zero_division=0)
    recall_weighted = recall_score(y_test, y_pred, average='weighted', zero_division=0)
    f1_weighted = f1_score(y_test, y_pred, average='weighted', zero_division=0)

    # Subset accuracy (Exact match ratio)
    subset_accuracy = accuracy_score(y_test, y_pred)

    # Hamming accuracy (1 - Hamming loss)
    hamming_acc = 1 - hamming_loss(y_test, y_pred)

    # Jaccard similarity score (macro averaged across all labels)
    jaccard_macro = jaccard_score(y_test, y_pred, average='samples', zero_division=0)

    return {
        'precision': precision_weighted,
        'recall': recall_weighted,
        'f1': f1_weighted,
        'subset_accuracy': subset_accuracy,
        'hamming_accuracy': hamming_acc,
        'jaccard_score': jaccard_macro
    }


def related_topics_prediction():
    # Set all seeds for reproducibility
    SEED = 42
    set_all_seeds(SEED)

    warnings.filterwarnings("ignore", category=UserWarning)

    # Load and preprocess data
    print("Loading and preprocessing data...")
    df = pd.read_csv("data.csv")
    df = df.dropna(subset=['related_topics'])
    df['description'] = df['description'].str.lower().fillna('')
    df['related_topics'] = df['related_topics'].apply(lambda x: x.split(',') if isinstance(x, str) else [])

    # Extract unique topics
    all_possible_topics = sorted(set(topic for topics in df['related_topics'] for topic in topics))
    print(f"\nโœ… Found {len(all_possible_topics)} unique topics.")

    # Prepare features and labels with deterministic behavior
    vectorizer = TfidfVectorizer(
        max_features=5000,
        ngram_range=(1, 3),
        stop_words='english'
    )
    X = vectorizer.fit_transform(df['description'])
    joblib.dump(vectorizer, 'related_topics_vectorizer.pkl')

    mlb = MultiLabelBinarizer(classes=all_possible_topics)
    y = mlb.fit_transform(df['related_topics'])
    joblib.dump(mlb, 'related_topics_label_binarizer.pkl')

    # Split dataset with fixed random state
    X_train, X_test, y_train, y_test, desc_train, desc_test = train_test_split(
        X, y, df['description'], test_size=0.2, random_state=SEED, shuffle=True
    )

    # Initialize models with fixed random states
    models = {
        'SVM': OneVsRestClassifier(SVC(kernel='linear', probability=True, random_state=SEED)),
        'Logistic_Regression': OneVsRestClassifier(LogisticRegression(max_iter=1000, random_state=SEED)),
        'Random_Forest': OneVsRestClassifier(RandomForestClassifier(n_estimators=100, random_state=SEED)),
        'KNN': OneVsRestClassifier(KNeighborsClassifier(n_neighbors=5)),
        'Gradient_Boosting': OneVsRestClassifier(GradientBoostingClassifier(n_estimators=100, random_state=SEED)),
        'XGBoost': xgb.XGBClassifier(
            n_estimators=100,
            use_label_encoder=False,
            eval_metric='mlogloss',
            random_state=SEED,
            seed=SEED
        )
    }

    # Initialize threshold optimizer
    optimizer = MultiLabelThresholdOptimizer(random_state=SEED)
    results = {}
    results_threshold = {}

    # Train and optimize each model
    for model_name, model in models.items():
        print(f"\nโณ Training {model_name} model...")
        model.fit(X_train, y_train)

        print(f"Finding optimal thresholds for {model_name}...")
        thresholds = optimizer.fit(X_train.toarray() if not isinstance(X_train, np.ndarray) else X_train,
                                   y_train, model, model_name)

        results_threshold[model_name] = thresholds
        y_pred = optimizer.predict(model, X_test, model_name)
        results[model_name] = evaluate_model_related(y_test, y_pred, model_name)

    print("\nSelecting best model...")
    best_model_name, best_model_metrics = compare_models(results)
    save_best_model_info(best_model_name, best_model_metrics, results_threshold[best_model_name])
    trained_best_model = models[best_model_name]

    # If it's a GridSearchCV model, extract the best estimator
    if isinstance(trained_best_model, GridSearchCV):
        trained_best_model = trained_best_model.best_estimator_

    joblib.dump(trained_best_model, "best_related_topics_model.pkl")
    print(f"โœ… Best trained model saved as best_related_topics_model.pkl")

    # Display sample predictions with fixed indices
    print("\n๐Ÿ“Œ Sample Predictions with Optimized Thresholds:")
    num_samples = 5
    # Use fixed indices instead of random sampling
    sample_indices = list(range(min(5, len(X_test.toarray()))))

    for idx in sample_indices:
        print(f"\nDescription: {desc_test.iloc[idx][:100]}...")
        print(f"โœ… True Topics: {', '.join(mlb.inverse_transform(np.array([y_test[idx]]))[0])}")

        for model_name in models.keys():
            y_pred = optimizer.predict(models[model_name], X_test[idx], model_name)
            predicted_labels = mlb.inverse_transform(y_pred)[0]
            print(f"๐Ÿ”ฎ Predicted ({model_name}): {', '.join(predicted_labels) if predicted_labels else 'None'}")

    print("\nโœ… Training and evaluation completed. Models and thresholds saved.")


if __name__ == "__main__":
    related_topics_prediction()