Spaces:
Running
Running
File size: 12,438 Bytes
29d76cb aea7215 0604f1a aea7215 29d76cb 025bf23 c6d5483 b308e39 025bf23 10a6c3a c6d5483 025bf23 0604f1a 7337bea 10a6c3a 025bf23 10a6c3a 025bf23 10a6c3a 025bf23 10a6c3a 025bf23 10a6c3a 025bf23 10a6c3a 025bf23 b308e39 10a6c3a 025bf23 0604f1a c6d5483 b308e39 10a6c3a 0604f1a 7337bea 025bf23 b308e39 c6d5483 b308e39 025bf23 b308e39 025bf23 b308e39 025bf23 0604f1a c6d5483 7337bea b308e39 10a6c3a 025bf23 c6d5483 10a6c3a b308e39 7337bea b308e39 0604f1a b308e39 025bf23 c6d5483 67c17bf b308e39 0604f1a 7337bea b308e39 025bf23 10a6c3a 67c17bf b308e39 7337bea b308e39 10a6c3a 7337bea b308e39 10a6c3a b308e39 aea7215 b308e39 10a6c3a b308e39 aea7215 0604f1a 7337bea b308e39 0604f1a 7337bea b308e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Hack for spaces
import os
os.system("pip uninstall -y gradio")
os.system("pip install -r requirements.txt")
# Real code begins
from typing import Union, List
import gradio as gr
import matplotlib
import torch
from pytorch_lightning.utilities.types import EPOCH_OUTPUT
matplotlib.use("Agg")
import numpy as np
from PIL import Image
import albumentations as A
import albumentations.pytorch as al_pytorch
import torchvision
from pl_bolts.models.gans import Pix2Pix
from pl_bolts.models.gans.pix2pix.components import PatchGAN
import torchvision.models as models
""" Class """
class OverpoweredPix2Pix(Pix2Pix):
def validation_step(self, batch, batch_idx):
"""Validation step"""
real, condition = batch
with torch.no_grad():
loss = self._disc_step(real, condition)
self.log("val_PatchGAN_loss", loss)
loss = self._gen_step(real, condition)
self.log("val_generator_loss", loss)
return {"sketch": real, "colour": condition}
def validation_epoch_end(
self, outputs: Union[EPOCH_OUTPUT, List[EPOCH_OUTPUT]]
) -> None:
sketch = outputs[0]["sketch"]
colour = outputs[0]["colour"]
with torch.no_grad():
gen_coloured = self.gen(sketch)
grid_image = torchvision.utils.make_grid(
[
sketch[0],
colour[0],
gen_coloured[0],
],
normalize=True,
)
self.logger.experiment.add_image(
f"Image Grid {str(self.current_epoch)}", grid_image, self.current_epoch
)
class PatchGanChanged(OverpoweredPix2Pix):
def __init__(self, in_channels, out_channels):
super(PatchGanChanged, self).__init__(
in_channels=in_channels, out_channels=out_channels
)
self.patch_gan = self.get_dense_PatchGAN(self.patch_gan)
@staticmethod
def get_dense_PatchGAN(disc: PatchGAN) -> PatchGAN:
"""Add final layer to gan"""
disc.final = torch.nn.Sequential(
disc.final,
torch.nn.Flatten(),
torch.nn.Linear(16 * 16, 1),
)
return disc
""" Load the model """
# train_64_val_16_patchgan_1val_plbolts_model_chkpt = "model/lightning_bolts_model/modified_path_gan.ckpt"
train_64_val_16_plbolts_model_chkpt = (
"model/lightning_bolts_model/epoch=99-step=44600.ckpt"
)
train_16_val_1_plbolts_model_chkpt = (
"model/lightning_bolts_model/epoch=99-step=89000.ckpt"
)
modified_patchgan_chkpt = "model/lightning_bolts_model/modified_patchgan.ckpt"
# model_checkpoint_path = "model/pix2pix_lightning_model/version_0/checkpoints/epoch=199-step=355600.ckpt"
# model_checkpoint_path = "model/pix2pix_lightning_model/gen.pth"
# Load the models
train_64_val_16_plbolts_model = OverpoweredPix2Pix.load_from_checkpoint(
train_64_val_16_plbolts_model_chkpt
)
train_64_val_16_plbolts_model.eval()
#
train_16_val_1_plbolts_model = OverpoweredPix2Pix.load_from_checkpoint(
train_16_val_1_plbolts_model_chkpt
)
train_16_val_1_plbolts_model.eval()
#
modified_patchgan_model = PatchGanChanged.load_from_checkpoint(modified_patchgan_chkpt)
modified_patchgan_model.eval()
# Create new class
class OverpoweredPix2Pix(Pix2Pix):
def __init__(self, in_channels, out_channels):
super(OverpoweredPix2Pix, self).__init__(
in_channels=in_channels, out_channels=out_channels
)
self._create_inception_score()
def _gen_step(self, real_images, conditioned_images):
# Pix2Pix has adversarial and a reconstruction loss
# First calculate the adversarial loss
fake_images = self.gen(conditioned_images)
disc_logits = self.patch_gan(fake_images, conditioned_images)
adversarial_loss = self.adversarial_criterion(
disc_logits, torch.ones_like(disc_logits)
)
# calculate reconstruction loss
recon_loss = self.recon_criterion(fake_images, real_images)
lambda_recon = self.hparams.lambda_recon
# calculate cosine similarity
representations_real = self.feature_extractor(real_images).flatten(1)
representations_fake = self.feature_extractor(fake_images).flatten(1)
similarity_score_list = self.cosine_similarity(
representations_real, representations_fake
)
cosine_sim = sum(similarity_score_list) / len(similarity_score_list)
self.log("Gen Cosine Sim Loss ", 1 - cosine_sim.cpu().detach().numpy())
# print(adversarial_loss,1-cosine_sim, lambda_recon, recon_loss, )
return (
(adversarial_loss)
+ (lambda_recon * recon_loss)
+ (lambda_recon * (1 - cosine_sim))
)
def _create_inception_score(self):
# init a pretrained resnet
backbone = models.resnet50(pretrained=True)
num_filters = backbone.fc.in_features
layers = list(backbone.children())[:-1]
self.feature_extractor = torch.nn.Sequential(*layers)
self.cosine_similarity = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
def validation_step(self, batch, batch_idx):
"""Validation step"""
real, condition = batch
with torch.no_grad():
disc_loss = self._disc_step(real, condition)
self.log("Valid PatchGAN Loss", disc_loss)
gan_loss = self._gen_step(real, condition)
self.log("Valid Generator Loss", gan_loss)
#
fake_images = self.gen(condition)
representations_real = self.feature_extractor(real).flatten(1)
representations_fake = self.feature_extractor(fake_images).flatten(1)
similarity_score_list = self.cosine_similarity(
representations_real, representations_fake
)
cosine_sim = sum(similarity_score_list) / len(similarity_score_list)
self.log("Valid Cosine Sim", cosine_sim)
return {"sketch": condition, "colour": real}
def validation_epoch_end(
self, outputs: Union[EPOCH_OUTPUT, List[EPOCH_OUTPUT]]
) -> None:
sketch = outputs[0]["sketch"]
colour = outputs[0]["colour"]
self.feature_extractor.eval()
with torch.no_grad():
gen_coloured = self.gen(sketch)
representations_gen = self.feature_extractor(gen_coloured).flatten(1)
representations_fake = self.feature_extractor(colour).flatten(1)
similarity_score_list = self.cosine_similarity(
representations_gen, representations_fake
)
similarity_score = sum(similarity_score_list) / len(similarity_score_list)
grid_image = torchvision.utils.make_grid(
[
sketch[0],
colour[0],
gen_coloured[0],
],
normalize=True,
)
self.logger.experiment.add_image(
f"Image Grid {str(self.current_epoch)} __ {str(similarity_score)} ",
grid_image,
self.current_epoch,
)
cosine_sim_model_chkpt = "model/lightning_bolts_model/cosine_sim_model.ckpt"
cosine_sim_model = OverpoweredPix2Pix.load_from_checkpoint(cosine_sim_model_chkpt)
cosine_sim_model.eval()
def predict(img: Image, type_of_model: str):
"""Create predictions"""
# transform img
image = np.asarray(img)
# use on inference
inference_transform = A.Compose(
[
A.Resize(width=256, height=256),
A.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0
),
al_pytorch.ToTensorV2(),
]
)
inference_img = inference_transform(image=image)["image"].unsqueeze(0)
# Choose model
if type_of_model == "train batch size 16, val batch size 1":
model = train_16_val_1_plbolts_model
elif type_of_model == "train batch size 64, val batch size 16":
model = train_64_val_16_plbolts_model
elif type_of_model == "cosine similarity":
model = cosine_sim_model
else:
model = modified_patchgan_model
with torch.no_grad():
result = model.gen(inference_img)
torchvision.utils.save_image(result, "inference_image.png", normalize=True)
return "inference_image.png" # 'coloured_image.png',
def predict1(img: Image):
return predict(img=img, type_of_model="train batch size 16, val batch size 1")
def predict2(img: Image):
return predict(img=img, type_of_model="train batch size 64, val batch size 16")
def predict3(img: Image):
return predict(
img=img,
type_of_model="train batch size 64, val batch size 16, patch gan has 1 output score instead of 16*16",
)
def predict4(img: Image):
return predict(
img=img,
type_of_model="cosine similarity",
)
model_input = gr.inputs.Radio(
[
"train batch size 16, val batch size 1",
"train batch size 64, val batch size 16",
"train batch size 64, val batch size 16, patch gan has 1 output score instead of 16*16",
],
label="Type of Pix2Pix model to use : ",
)
image_input = gr.inputs.Image(type="pil")
img_examples = [
"examples/thesis_test.png",
"examples/thesis_test2.png",
"examples/thesis1.png",
"examples/thesis4.png",
"examples/thesis5.png",
"examples/thesis6.png",
]
with gr.Blocks() as demo:
gr.Markdown(" # Colour your sketches!")
gr.Markdown(" ## Description :")
gr.Markdown(" There are 4 Pix2Pix models in this example:")
gr.Markdown(" 1. Training batch size is 16 , validation is 1")
gr.Markdown(" 2. Training batch size is 64 , validation is 16")
gr.Markdown(
" 3. PatchGAN is changed, 1 value only instead of 16*16 ;"
"training batch size is 64 , validation is 16"
)
gr.Markdown(
" 4. cosine similarity is also added as a metric in this experiment for the generator. "
)
with gr.Tabs():
with gr.TabItem("tr_16_val_1"):
with gr.Row():
image_input1 = gr.inputs.Image(type="pil")
image_output1 = gr.outputs.Image(
type="pil",
)
colour_1 = gr.Button("Colour it!")
gr.Examples(
examples=img_examples,
inputs=image_input1,
outputs=image_output1,
fn=predict1,
)
with gr.TabItem("tr_64_val_14"):
with gr.Row():
image_input2 = gr.inputs.Image(type="pil")
image_output2 = gr.outputs.Image(
type="pil",
)
colour_2 = gr.Button("Colour it!")
with gr.Row():
gr.Examples(
examples=img_examples,
inputs=image_input2,
outputs=image_output2,
fn=predict2,
)
with gr.TabItem("Single Value Discriminator"):
with gr.Row():
image_input3 = gr.inputs.Image(type="pil")
image_output3 = gr.outputs.Image(
type="pil",
)
colour_3 = gr.Button("Colour it!")
with gr.Row():
gr.Examples(
examples=img_examples,
inputs=image_input3,
outputs=image_output3,
fn=predict3,
)
with gr.TabItem("Cosine similarity loss"):
with gr.Row():
image_input4 = gr.inputs.Image(type="pil")
image_output4 = gr.outputs.Image(
type="pil",
)
colour_4 = gr.Button("Colour it!")
with gr.Row():
gr.Examples(
examples=img_examples,
inputs=image_input4,
outputs=image_output4,
fn=predict4,
)
colour_1.click(
fn=predict1,
inputs=image_input1,
outputs=image_output1,
)
colour_2.click(
fn=predict2,
inputs=image_input2,
outputs=image_output2,
)
colour_3.click(
fn=predict3,
inputs=image_input3,
outputs=image_output3,
)
colour_4.click(
fn=predict4,
inputs=image_input4,
outputs=image_output4,
)
demo.title = "Colour your sketches!"
demo.launch()
|