File size: 10,196 Bytes
d3112c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Helpers for sampling from a single- or multi-stage point cloud diffusion model.
"""

from typing import Any, Callable, Dict, Iterator, List, Sequence, Tuple

import torch
import torch.nn as nn

from .pc import PointCloud

from point_e.diffusion.gaussian_diffusion import GaussianDiffusion
from point_e.diffusion.k_diffusion import karras_sample_progressive


class PointCloudSampler:
    """
    A wrapper around a model or stack of models that produces conditional or
    unconditional sample tensors.

    By default, this will load models and configs from files.
    If you want to modify the sampler arguments of an existing sampler, call
    with_options() or with_args().
    """

    def __init__(
        self,
        device: torch.device,
        models: Sequence[nn.Module],
        diffusions: Sequence[GaussianDiffusion],
        num_points: Sequence[int],
        aux_channels: Sequence[str],
        model_kwargs_key_filter: Sequence[str] = ("*",),
        guidance_scale: Sequence[float] = (3.0, 3.0),
        clip_denoised: bool = True,
        use_karras: Sequence[bool] = (True, True),
        karras_steps: Sequence[int] = (64, 64),
        sigma_min: Sequence[float] = (1e-3, 1e-3),
        sigma_max: Sequence[float] = (120, 160),
        s_churn: Sequence[float] = (3, 0),
    ):
        n = len(models)
        assert n > 0

        if n > 1:
            if len(guidance_scale) == 1:
                # Don't guide the upsamplers by default.
                guidance_scale = list(guidance_scale) + [1.0] * (n - 1)
            if len(use_karras) == 1:
                use_karras = use_karras * n
            if len(karras_steps) == 1:
                karras_steps = karras_steps * n
            if len(sigma_min) == 1:
                sigma_min = sigma_min * n
            if len(sigma_max) == 1:
                sigma_max = sigma_max * n
            if len(s_churn) == 1:
                s_churn = s_churn * n
            if len(model_kwargs_key_filter) == 1:
                model_kwargs_key_filter = model_kwargs_key_filter * n
        if len(model_kwargs_key_filter) == 0:
            model_kwargs_key_filter = ["*"] * n
        assert len(guidance_scale) == n
        assert len(use_karras) == n
        assert len(karras_steps) == n
        assert len(sigma_min) == n
        assert len(sigma_max) == n
        assert len(s_churn) == n
        assert len(model_kwargs_key_filter) == n

        self.device = device
        self.num_points = num_points
        self.aux_channels = aux_channels
        self.model_kwargs_key_filter = model_kwargs_key_filter
        self.guidance_scale = guidance_scale
        self.clip_denoised = clip_denoised
        self.use_karras = use_karras
        self.karras_steps = karras_steps
        self.sigma_min = sigma_min
        self.sigma_max = sigma_max
        self.s_churn = s_churn

        self.models = models
        self.diffusions = diffusions

    @property
    def num_stages(self) -> int:
        return len(self.models)

    def sample_batch(self, batch_size: int, model_kwargs: Dict[str, Any]) -> torch.Tensor:
        samples = None
        for x in self.sample_batch_progressive(batch_size, model_kwargs):
            samples = x
        return samples

    def sample_batch_progressive(
        self, batch_size: int, model_kwargs: Dict[str, Any]
    ) -> Iterator[torch.Tensor]:
        samples = None
        for (
            model,
            diffusion,
            stage_num_points,
            stage_guidance_scale,
            stage_use_karras,
            stage_karras_steps,
            stage_sigma_min,
            stage_sigma_max,
            stage_s_churn,
            stage_key_filter,
        ) in zip(
            self.models,
            self.diffusions,
            self.num_points,
            self.guidance_scale,
            self.use_karras,
            self.karras_steps,
            self.sigma_min,
            self.sigma_max,
            self.s_churn,
            self.model_kwargs_key_filter,
        ):
            stage_model_kwargs = model_kwargs.copy()
            if stage_key_filter != "*":
                use_keys = set(stage_key_filter.split(","))
                stage_model_kwargs = {k: v for k, v in stage_model_kwargs.items() if k in use_keys}
            if samples is not None:
                stage_model_kwargs["low_res"] = samples
            if hasattr(model, "cached_model_kwargs"):
                stage_model_kwargs = model.cached_model_kwargs(batch_size, stage_model_kwargs)
            sample_shape = (batch_size, 3 + len(self.aux_channels), stage_num_points)

            if stage_guidance_scale != 1 and stage_guidance_scale != 0:
                for k, v in stage_model_kwargs.copy().items():
                    stage_model_kwargs[k] = torch.cat([v, torch.zeros_like(v)], dim=0)

            if stage_use_karras:
                samples_it = karras_sample_progressive(
                    diffusion=diffusion,
                    model=model,
                    shape=sample_shape,
                    steps=stage_karras_steps,
                    clip_denoised=self.clip_denoised,
                    model_kwargs=stage_model_kwargs,
                    device=self.device,
                    sigma_min=stage_sigma_min,
                    sigma_max=stage_sigma_max,
                    s_churn=stage_s_churn,
                    guidance_scale=stage_guidance_scale,
                )
            else:
                internal_batch_size = batch_size
                if stage_guidance_scale:
                    model = self._uncond_guide_model(model, stage_guidance_scale)
                    internal_batch_size *= 2
                samples_it = diffusion.p_sample_loop_progressive(
                    model,
                    shape=(internal_batch_size, *sample_shape[1:]),
                    model_kwargs=stage_model_kwargs,
                    device=self.device,
                    clip_denoised=self.clip_denoised,
                )
            for x in samples_it:
                samples = x["pred_xstart"][:batch_size]
                if "low_res" in stage_model_kwargs:
                    samples = torch.cat(
                        [stage_model_kwargs["low_res"][: len(samples)], samples], dim=-1
                    )
                yield samples

    @classmethod
    def combine(cls, *samplers: "PointCloudSampler") -> "PointCloudSampler":
        assert all(x.device == samplers[0].device for x in samplers[1:])
        assert all(x.aux_channels == samplers[0].aux_channels for x in samplers[1:])
        assert all(x.clip_denoised == samplers[0].clip_denoised for x in samplers[1:])
        return cls(
            device=samplers[0].device,
            models=[x for y in samplers for x in y.models],
            diffusions=[x for y in samplers for x in y.diffusions],
            num_points=[x for y in samplers for x in y.num_points],
            aux_channels=samplers[0].aux_channels,
            model_kwargs_key_filter=[x for y in samplers for x in y.model_kwargs_key_filter],
            guidance_scale=[x for y in samplers for x in y.guidance_scale],
            clip_denoised=samplers[0].clip_denoised,
            use_karras=[x for y in samplers for x in y.use_karras],
            karras_steps=[x for y in samplers for x in y.karras_steps],
            sigma_min=[x for y in samplers for x in y.sigma_min],
            sigma_max=[x for y in samplers for x in y.sigma_max],
            s_churn=[x for y in samplers for x in y.s_churn],
        )

    def _uncond_guide_model(
        self, model: Callable[..., torch.Tensor], scale: float
    ) -> Callable[..., torch.Tensor]:
        def model_fn(x_t, ts, **kwargs):
            half = x_t[: len(x_t) // 2]
            combined = torch.cat([half, half], dim=0)
            model_out = model(combined, ts, **kwargs)
            eps, rest = model_out[:, :3], model_out[:, 3:]
            cond_eps, uncond_eps = torch.chunk(eps, 2, dim=0)
            half_eps = uncond_eps + scale * (cond_eps - uncond_eps)
            eps = torch.cat([half_eps, half_eps], dim=0)
            return torch.cat([eps, rest], dim=1)

        return model_fn

    def split_model_output(
        self,
        output: torch.Tensor,
        rescale_colors: bool = False,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        assert (
            len(self.aux_channels) + 3 == output.shape[1]
        ), "there must be three spatial channels before aux"
        pos, joined_aux = output[:, :3], output[:, 3:]

        aux = {}
        for i, name in enumerate(self.aux_channels):
            v = joined_aux[:, i]
            if name in {"R", "G", "B", "A"}:
                v = v.clamp(0, 255).round()
                if rescale_colors:
                    v = v / 255.0
            aux[name] = v
        return pos, aux

    def output_to_point_clouds(self, output: torch.Tensor) -> List[PointCloud]:
        res = []
        for sample in output:
            xyz, aux = self.split_model_output(sample[None], rescale_colors=True)
            res.append(
                PointCloud(
                    coords=xyz[0].t().cpu().numpy(),
                    channels={k: v[0].cpu().numpy() for k, v in aux.items()},
                )
            )
        return res

    def with_options(
        self,
        guidance_scale: float,
        clip_denoised: bool,
        use_karras: Sequence[bool] = (True, True),
        karras_steps: Sequence[int] = (64, 64),
        sigma_min: Sequence[float] = (1e-3, 1e-3),
        sigma_max: Sequence[float] = (120, 160),
        s_churn: Sequence[float] = (3, 0),
    ) -> "PointCloudSampler":
        return PointCloudSampler(
            device=self.device,
            models=self.models,
            diffusions=self.diffusions,
            num_points=self.num_points,
            aux_channels=self.aux_channels,
            model_kwargs_key_filter=self.model_kwargs_key_filter,
            guidance_scale=guidance_scale,
            clip_denoised=clip_denoised,
            use_karras=use_karras,
            karras_steps=karras_steps,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            s_churn=s_churn,
        )