Spaces:
Sleeping
Sleeping
File size: 10,224 Bytes
e3f3c34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
"""Implementation of YOLOv3 architecture."""
from typing import Any, List
import torch
import torch.nn as nn
import torch
from pytorch_lightning import LightningModule, Trainer
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
import torchvision
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import pandas as pd
from torch.optim.lr_scheduler import OneCycleLR
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(nn.Module):
def __init__(self, load_config: List[Any] = config, in_channels=3, num_classes=80):
super().__init__()
self.load_config = load_config
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in self.load_config:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(
ResidualBlock(
in_channels,
num_repeats=num_repeats,
)
)
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(
nn.Upsample(scale_factor=2),
)
in_channels = in_channels * 3
return layers
class Assignment13(LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.epoch_number = 0
self.config = config
self.train_csv_path = self.config.DATASET + "/train.csv"
self.test_csv_path = self.config.DATASET + "/test.csv"
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
train_csv_path=self.train_csv_path, test_csv_path=self.test_csv_path)
self.check_class_accuracy = check_class_accuracy
self.model = YOLOv3(num_classes=self.config.NUM_CLASSES)
self.loss_fn = YoloLoss()
self.check_class_accuracy = check_class_accuracy
self.get_evaluation_bboxes = get_evaluation_bboxes
self.scaled_anchors = (torch.tensor(self.config.ANCHORS) * torch.tensor(self.config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2))
self.losses = []
self.plot_couple_examples = plot_couple_examples
self.mean_average_precision = mean_average_precision
self.EPOCHS = self.config.NUM_EPOCHS * 2 // 5
def forward(self, x):
out = self.model(x)
return out
def training_step(self, batch, batch_idx):
x, y = batch
out = self(x)
y0, y1, y2 = (y[0],y[1],y[2])
loss = (
self.loss_fn(out[0], y0, self.scaled_anchors[0].to(y0))
+ self.loss_fn(out[1], y1, self.scaled_anchors[1].to(y1))
+ self.loss_fn(out[2], y2, self.scaled_anchors[2].to(y2))
)
self.losses.append(loss.item())
mean_loss = sum(self.losses) / len(self.losses)
self.log("train_loss", mean_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
#self.log("train_loss", mean_loss)
return loss
def on_train_epoch_start(self):
self.epoch_number += 1
self.losses = []
#self.plot_couple_examples(self.model,self.test_loader,0.6,0.5,self.scaled_anchors)
if self.epoch_number > 1 and self.epoch_number % 10 == 0:
self.plot_couple_examples(self.model,self.test_loader,0.6,0.5,self.scaled_anchors)
def on_train_epoch_end(self):
print(f"Currently epoch {self.epoch_number}")
print("On Train Eval loader:")
print("On Train loader:")
self.check_class_accuracy(self.model, self.train_loader, threshold=self.config.CONF_THRESHOLD)
if self.epoch_number == self.EPOCHS:
#if self.epoch_number > 1 and self.epoch_number % 3 == 0:
self.check_class_accuracy(self.model, self.test_loader, threshold=self.config.CONF_THRESHOLD)
pred_boxes, true_boxes = self.get_evaluation_bboxes( self.test_loader,self.model,iou_threshold=self.config.NMS_IOU_THRESH,
anchors=self.config.ANCHORS,
threshold=self.config.CONF_THRESHOLD,)
mapval = self.mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=self.config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=self.config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
self.model.train()
pass
def configure_optimizers(self):
optimizer = optimizer = optim.Adam(
model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY)
#EPOCHS = config.NUM_EPOCHS * 2 // 5
scheduler = OneCycleLR(
optimizer,
max_lr=1E-3,
steps_per_epoch=len(self.train_loader),
epochs=self.EPOCHS,
pct_start=5/self.EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy='linear'
)
return {"optimizer": optimizer, "lr_scheduler":scheduler}
####################
# DATA RELATED HOOKS
####################
def train_dataloader(self):
return self.train_loader
def test_dataloader(self):
return self.test_loader
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(load_config=config, num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert out[0].shape == (2, 3, IMAGE_SIZE // 32, IMAGE_SIZE // 32, num_classes + 5)
assert out[1].shape == (2, 3, IMAGE_SIZE // 16, IMAGE_SIZE // 16, num_classes + 5)
assert out[2].shape == (2, 3, IMAGE_SIZE // 8, IMAGE_SIZE // 8, num_classes + 5)
print("Success!")
|