File size: 1,251 Bytes
b90a33e
 
 
 
 
1383829
 
 
b90a33e
 
 
 
1383829
b90a33e
1383829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90a33e
 
 
 
1383829
b90a33e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import gradio as gr
import requests
import os

API_URL1 = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
API_URL2 = "https://api-inference.huggingface.co/models/facebook/convnext-xlarge-384-22k-1k"
API_URL3 = "https://api-inference.huggingface.co/models/microsoft/trocr-base-handwritten"

bt = os.environ['HACKAITHONBEARERTOKEN']
headers = {"Authorization": bt }

def query(mood, select_model, filepath):

    print (select_model);
    print (filepath);
    
    
    if (select_model=="Sentiment"):
    	response = requests.post(API_URL1, headers=headers, json=mood)
    elif (select_model=="WhatIsThat"):
        data = open(filepath, 'rb' ).read()
        response = requests.post(API_URL2, headers=headers, data=data)
    else:
        data = open(filepath, 'rb' ).read()
        response = requests.post(API_URL3, headers=headers, data=data)
    return str(response.json())

def greet(mood,select_model,image):
    output = query({"inputs":mood}, select_model, image)
    print (str(output))
    return str(output)

iface = gr.Interface(
  fn=greet, inputs=["text", gr.Radio(choices=["Sentiment", "WhatIsThat", "HandWriting"],value="Sentiment"),gr.Image(type="filepath")], outputs="text")
iface.launch()