File size: 5,784 Bytes
7f996ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# main.py
import os
import tempfile

import streamlit as st
from files import file_uploader, url_uploader
from question import chat_with_doc
from brain import brain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client
from explorer import view_document
from stats import get_usage_today

supabase_url = 'https://ktexmliefragugupzmqw.supabase.co'
st.secrets.supabase_url = supabase_url

supabase_key = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Imt0ZXhtbGllZnJhZ3VndXB6bXF3Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2ODUyNjg1MjcsImV4cCI6MjAwMDg0NDUyN30.7DBDCcqelS0GNojPqv0zuvCT5vs5x2Codxyr5cDPZvU'
st.secrets.supabase_key = supabase_key

openai_api_key_head = 'sk-9utMl6JfUfgm4lRIXmK'
openai_api_key_tail = 'bT3BlbkFJBvNXhwDz9WJrzmi5G6FP'
openai_api_key = openai_api_key_head+openai_api_key_tail
st.secrets.opeanai_api_key = openai_api_key

st.secrets.anthropic_api_key = ""
st.secrets.usage_limit = 1000
anthropic_api_key = ''
supabase: Client = create_client(supabase_url, supabase_key)
st.secrets.self_hosted = "true"
self_hosted = "true"

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
vector_store = SupabaseVectorStore(
    supabase, embeddings, table_name="documents")
models = ["gpt-3.5-turbo", "gpt-4"]
if anthropic_api_key:
    models += ["claude-v1", "claude-v1.3",
               "claude-instant-v1-100k", "claude-instant-v1.1-100k"]

# Set the theme
st.set_page_config(
    page_title="ColleenGPT",
    layout="wide",
    initial_sidebar_state="expanded",
)

st.title("🧠 ColleenGPT")
st.markdown("ask your ledger anything.")
if self_hosted == "false":
    st.markdown('**📢 Note: In the public demo, access to functionality is restricted. You can only use the GPT-3.5-turbo model and upload files up to 1Mb. To use more models and upload larger files, consider self-hosting Quivr.**')

st.markdown("---\n\n")

st.session_state["overused"] = False
if self_hosted == "false":
    usage = get_usage_today(supabase)
    if usage > st.secrets.usage_limit:
    # if usage > 1000:
        st.markdown(
            f"<span style='color:red'>You have used {usage} tokens today, which is more than your daily limit of {st.secrets.usage_limit} tokens. Please come back later or consider self-hosting.</span>", unsafe_allow_html=True)
            # f"<span style='color:red'>You have used {usage} tokens today, which is more than your daily limit of {1000} tokens. Please come back later or consider self-hosting.</span>", unsafe_allow_html = True)

        st.session_state["overused"] = True
    else:
        st.markdown(f"<span style='color:blue'>Usage today: {usage} tokens out of {st.secrets.usage_limit}</span>", unsafe_allow_html=True)
        # st.markdown(f"<span style='color:blue'>Usage today: {usage} tokens out of {1000}</span>", unsafe_allow_html=True)

    st.write("---")
    



# Initialize session state variables
if 'model' not in st.session_state:
    st.session_state['model'] = "gpt-3.5-turbo"
if 'temperature' not in st.session_state:
    st.session_state['temperature'] = 0.0
if 'chunk_size' not in st.session_state:
    st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state:
    st.session_state['chunk_overlap'] = 0
if 'max_tokens' not in st.session_state:
    st.session_state['max_tokens'] = 256

# Create a radio button for user to choose between adding knowledge or asking a question
user_choice = st.radio(
    "Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget', "Explore"))

st.markdown("---\n\n")
# st.sidebar.image('assets/Images/Vanti - Main Logo@4x copy.png')
st.sidebar.image('assets/Images/colleen-logo.png')
if user_choice == 'Add Knowledge':
    # Display chunk size and overlap selection only when adding knowledge
    st.sidebar.title("Configuration")
    st.sidebar.markdown(
        "Choose your chunk size and overlap for adding knowledge.")
    st.session_state['chunk_size'] = st.sidebar.slider(
        "Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
    st.session_state['chunk_overlap'] = st.sidebar.slider(
        "Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
    
    # Create two columns for the file uploader and URL uploader
    col1, col2 = st.columns(2)
    
    with col1:
        file_uploader(supabase, vector_store)
    with col2:
        url_uploader(supabase, vector_store)
elif user_choice == 'Chat with your Brain':
    # Display model and temperature selection only when asking questions
    st.sidebar.title("Configuration")
    st.sidebar.markdown(
        "Choose your model and temperature for asking questions.")
    if self_hosted != "false":
        st.session_state['model'] = st.sidebar.selectbox(
        "Select Model", models, index=(models).index(st.session_state['model']))
    else:
        st.sidebar.write("**Model**: gpt-3.5-turbo")
        st.sidebar.write("**Self Host to unlock more models such as claude-v1 and GPT4**")
        st.session_state['model'] = "gpt-3.5-turbo"
    st.session_state['temperature'] = st.sidebar.slider(
        "Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
    if st.secrets.self_hosted != "false":
    # if "true" != "false":
        st.session_state['max_tokens'] = st.sidebar.slider(
            "Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048)
    else:
        st.session_state['max_tokens'] = 256
    
    chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
elif user_choice == 'Forget':
    st.sidebar.title("Configuration")

    brain(supabase)
elif user_choice == 'Explore':
    st.sidebar.title("Configuration")
    view_document(supabase)

st.markdown("---\n\n")