File size: 3,120 Bytes
9b5b26a
 
 
 
c19d193
6aae614
c98bb18
a07c5ab
8fe992b
9b5b26a
 
5df72d6
43feaed
a07c5ab
80ee1a0
 
a07c5ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ee1a0
 
a07c5ab
320a6ae
c98bb18
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d2f6a24
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.ocr import ocr_tool
from tools.reconcile import reconcile_documents

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !

@tool 
def reconcile_documents(text1:str, text2:str) -> str:
    """Compares two text documents and identifies differences using LLM analysis.
    Args:
        text1: First document text
        text2: Second document text
    """
    prompt = f"""Perform detailed comparison of these two documents:
    
    Document 1:
    {text1}
    
    Document 2:
    {text2}
    
    Identify and list:
    1. Numerical discrepancies
    2. Missing information
    3. Formatting differences
    4. Semantic contradictions
    
    Final verdict: Are these documents substantially equivalent?"""
    
    return f"Comparison request queued: {prompt[:200]}..."  # Actual comparison done through agent

    



@tool 
def ocr_tool(image_path: str) -> str:
    """Extracts text from images or scanned documents using OCR.
    Args:
        image_path: Path to the image file
    """
    try:
        ocr_engine = PaddleOCR(use_angle_cls=True, lang='en')
        result = ocr_engine.ocr(image_path, cls=True)
        texts = [line[1][0] for line in result[0]] if result else []
        return "\n".join(texts)
    except Exception as e:
        return f"OCR Error: {str(e)}"


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()