Spaces:
Sleeping
Sleeping
File size: 3,120 Bytes
9b5b26a c19d193 6aae614 c98bb18 a07c5ab 8fe992b 9b5b26a 5df72d6 43feaed a07c5ab 80ee1a0 a07c5ab 80ee1a0 a07c5ab 320a6ae c98bb18 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b d2f6a24 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.ocr import ocr_tool
from tools.reconcile import reconcile_documents
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def reconcile_documents(text1:str, text2:str) -> str:
"""Compares two text documents and identifies differences using LLM analysis.
Args:
text1: First document text
text2: Second document text
"""
prompt = f"""Perform detailed comparison of these two documents:
Document 1:
{text1}
Document 2:
{text2}
Identify and list:
1. Numerical discrepancies
2. Missing information
3. Formatting differences
4. Semantic contradictions
Final verdict: Are these documents substantially equivalent?"""
return f"Comparison request queued: {prompt[:200]}..." # Actual comparison done through agent
@tool
def ocr_tool(image_path: str) -> str:
"""Extracts text from images or scanned documents using OCR.
Args:
image_path: Path to the image file
"""
try:
ocr_engine = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr_engine.ocr(image_path, cls=True)
texts = [line[1][0] for line in result[0]] if result else []
return "\n".join(texts)
except Exception as e:
return f"OCR Error: {str(e)}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |