Spaces:
Sleeping
Sleeping
File size: 3,641 Bytes
1960c04 29db4eb 1960c04 29db4eb 1960c04 0180e45 1960c04 6daeff1 1960c04 6daeff1 1960c04 6daeff1 1960c04 23df320 1960c04 23df320 1960c04 e1cf2c0 23df320 1960c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import gradio as gr
import sox
import subprocess
from google_spell_checker import GoogleSpellChecker
spell_checker = GoogleSpellChecker(lang="fa")
def read_file_and_process(wav_file):
filename = wav_file.split('.')[0]
filename_16k = filename + "16k.wav"
resampler(wav_file, filename_16k)
speech, _ = sf.read(filename_16k)
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
return inputs
def resampler(input_file_path, output_file_path):
command = (
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
f"{output_file_path}"
)
subprocess.call(command, shell=True)
def parse_transcription(logits):
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
del(logits)
return transcription
def corrector(sentence):
check_spell = spell_checker.check(sentence)
if check_spell[0] is False:
corrected = check_spell[1]
return corrected
else:
return sentence
def parse(wav_file):
input_values = read_file_and_process(wav_file)
with torch.no_grad():
logits = model(**input_values).logits
sentence = parse_transcription(logits)
corrected_sent = corrector(sentence)
return corrected_sent
# def parse(wav_file):
# check_spell = ''
# input_values = read_file_and_process(wav_file)
# with torch.no_grad():
# logits = model(**input_values).logits
# # sentence = parse_transcription(logits)
# check_spell = spell_checker.check(parse_transcription(logits))
# # if check_spell[0] is False:
# # corrected = check_spell[1]
# # else:
# # corrected = sentence
# return spell_checker.check(parse_transcription(logits))[1] if spell_checker.check(parse_transcription(logits))[0] is False else parse_transcription(logits)
model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
processor = Wav2Vec2Processor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
input_ = gr.Audio(source="microphone",
type="filepath",
label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.",
show_download_button=True,
show_edit_button=True,
)
txtbox = gr.Textbox(
label="متن گفتار شما: ",
lines=5,
text_align="right",
show_label=True,
show_copy_button=True,
)
title = "Speech-to-Text (persian)"
description = "، توجه داشته باشید که هرچه گفتار شما شمرده تر باشد خروجی با کیفیت تری دارید.روی دکمه ضبط صدا کلیک کنید و سپس دسترسی مرورگر خود را به میکروفون دستگاه بدهید، سپس شروع به صحبت کنید و برای اتمام ضبط دوباره روی دکمه کلیک کنید"
article = "<p style='text-align: center'><a href='https://github.com/nimaprgrmr'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"
demo = gr.Interface(fn=parse, inputs = input_, outputs=txtbox, title=title, description=description, article = article,
streaming=True, interactive=True,
analytics_enabled=False, show_tips=False, enable_queue=True)
demo.launch(share=True) |