File size: 3,641 Bytes
1960c04
 
 
 
 
 
29db4eb
1960c04
 
29db4eb
 
1960c04
 
 
 
 
 
0180e45
1960c04
 
 
 
 
 
 
 
 
 
 
 
 
 
6daeff1
1960c04
 
 
6daeff1
 
 
 
 
 
 
 
1960c04
 
 
 
6daeff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960c04
 
 
 
 
23df320
 
 
 
 
 
1960c04
23df320
 
 
 
 
1960c04
 
 
e1cf2c0
23df320
1960c04
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import gradio as gr
import sox
import subprocess
from google_spell_checker import GoogleSpellChecker


spell_checker = GoogleSpellChecker(lang="fa")

def read_file_and_process(wav_file):
    filename = wav_file.split('.')[0]
    filename_16k = filename + "16k.wav"
    resampler(wav_file, filename_16k)
    speech, _ = sf.read(filename_16k)
    inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)

    return inputs


def resampler(input_file_path, output_file_path):
    command = (
        f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
        f"{output_file_path}"
    )
    subprocess.call(command, shell=True)


def parse_transcription(logits):
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
    del(logits)
    return transcription


def corrector(sentence):
  check_spell = spell_checker.check(sentence)
  if check_spell[0] is False:
    corrected = check_spell[1]
    return corrected
  else:
    return sentence
      
def parse(wav_file):
    input_values = read_file_and_process(wav_file)
    with torch.no_grad():
        logits = model(**input_values).logits
    sentence = parse_transcription(logits)
    corrected_sent = corrector(sentence)
    return corrected_sent
    

# def parse(wav_file):
#     check_spell = ''
#     input_values = read_file_and_process(wav_file)
#     with torch.no_grad():
#         logits = model(**input_values).logits
#     # sentence = parse_transcription(logits)
#     check_spell = spell_checker.check(parse_transcription(logits))
#     # if check_spell[0] is False:
#     #   corrected = check_spell[1]
#     # else:
#     #   corrected = sentence
#     return spell_checker.check(parse_transcription(logits))[1] if spell_checker.check(parse_transcription(logits))[0] is False else parse_transcription(logits)

model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
processor = Wav2Vec2Processor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)

input_ = gr.Audio(source="microphone",
                  type="filepath",
                  label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.",
                  show_download_button=True,
                  show_edit_button=True,
                 )
txtbox = gr.Textbox(
            label="متن گفتار شما: ",
            lines=5,
            text_align="right",
            show_label=True,
            show_copy_button=True,
        )

title = "Speech-to-Text (persian)"
description = "، توجه داشته باشید که هرچه گفتار شما شمرده تر باشد خروجی با کیفیت تری دارید.روی دکمه ضبط صدا کلیک کنید و سپس دسترسی مرورگر خود را به میکروفون دستگاه بدهید، سپس شروع به صحبت کنید و برای اتمام ضبط دوباره روی دکمه کلیک کنید"
article = "<p style='text-align: center'><a href='https://github.com/nimaprgrmr'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"

demo = gr.Interface(fn=parse, inputs = input_,  outputs=txtbox, title=title, description=description, article = article,
             streaming=True, interactive=True,
             analytics_enabled=False, show_tips=False, enable_queue=True)
demo.launch(share=True)