Spaces:
Sleeping
Sleeping
File size: 1,299 Bytes
fda413d a78d459 fda413d 3616865 16cbcd3 18ab206 0e76efe 1d106a2 f4f218a fda413d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from fastai.vision.all import *
import gradio as gr
# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath
# Provide the full path to the model file
model_path = 'models/vehicle-recognizer-v2.pkl'
model = load_learner(model_path)
cap_labels = model.dls.vocab
def recognize_image(image):
pred, idx, probs = model.predict(image)
return dict(zip(cap_labels, map(float, probs)))
image_input = gr.Image()
label_output = gr.Label()
examples = [
'test_images/bus.jpg',
'test_images/car.jpg',
'test_images/helicopter.jpg',
'test_images/plane.jpg',
'test_images/Norton_Motorcycle.jpg',
'test_images/pexels-pixabay-163236.jpg',
'test_images/imgpr405.jpg',
'test_images/tractor-385681_1280.jpg'
# 'test_images/bycle.jpg',
# 'test_images/fire_truck.jpg',
# 'test_images/hovercraft.jpg',
# 'test_images/jet_ski.jpg',
# 'test_images/kayak.jpg',
# 'test_images/motorcycle.jpg',
# 'test_images/rickshaw.jpg',
# 'test_images/skateboard.jpg',
# 'test_images/scooter.jpg',
# 'test_images/tractor.jpg',
# 'test_images/van.jpg',
# 'test_images/unicycle.jpeg'
]
iface = gr.Interface(fn=recognize_image, inputs=image_input, outputs=label_output, examples=examples)
iface.launch(inline=False)
|