File size: 1,299 Bytes
fda413d
 
 
a78d459
 
 
 
 
 
fda413d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3616865
16cbcd3
18ab206
0e76efe
 
1d106a2
 
 
 
 
 
 
 
 
 
 
 
f4f218a
fda413d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from fastai.vision.all import *
import gradio as gr

# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath




# Provide the full path to the model file
model_path = 'models/vehicle-recognizer-v2.pkl'
model = load_learner(model_path)

cap_labels = model.dls.vocab

def recognize_image(image):
    pred, idx, probs = model.predict(image)
    return dict(zip(cap_labels, map(float, probs)))

image_input = gr.Image()
label_output = gr.Label()

examples = [
    'test_images/bus.jpg',
    'test_images/car.jpg',
    'test_images/helicopter.jpg',
    'test_images/plane.jpg',
    'test_images/Norton_Motorcycle.jpg',
    'test_images/pexels-pixabay-163236.jpg',
    'test_images/imgpr405.jpg',
    'test_images/tractor-385681_1280.jpg'
    # 'test_images/bycle.jpg',
    # 'test_images/fire_truck.jpg',
    # 'test_images/hovercraft.jpg',
    # 'test_images/jet_ski.jpg',
    # 'test_images/kayak.jpg',
    # 'test_images/motorcycle.jpg',
    # 'test_images/rickshaw.jpg',
    # 'test_images/skateboard.jpg',
    # 'test_images/scooter.jpg',
    # 'test_images/tractor.jpg',
    # 'test_images/van.jpg',
    # 'test_images/unicycle.jpeg'

]

iface = gr.Interface(fn=recognize_image, inputs=image_input, outputs=label_output, examples=examples)
iface.launch(inline=False)