File size: 8,247 Bytes
39e6004
 
 
 
 
 
 
 
 
 
 
edff23c
6a33bcd
edff23c
 
 
 
 
 
39e6004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a33bcd
39e6004
 
 
 
edff23c
39e6004
 
 
 
 
 
 
 
 
 
 
 
 
edff23c
39e6004
 
 
6a33bcd
39e6004
edff23c
39e6004
 
 
 
 
 
 
 
 
 
 
6a33bcd
edff23c
39e6004
 
6a33bcd
edff23c
39e6004
 
 
 
 
edff23c
39e6004
 
 
 
edff23c
39e6004
 
 
 
 
 
edff23c
39e6004
 
edff23c
39e6004
 
 
 
 
edff23c
39e6004
 
 
edff23c
39e6004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edff23c
39e6004
 
 
edff23c
39e6004
 
 
 
 
edff23c
39e6004
 
 
edff23c
39e6004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a33bcd
 
 
 
 
 
39e6004
 
 
 
 
6a33bcd
 
39e6004
6a33bcd
 
 
 
 
39e6004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edff23c
39e6004
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from functools import lru_cache
import json
import mysql.connector
from mysql.connector import Error
import os
import sys
from datetime import datetime
import time
import logging
import threading

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
)

# Enable GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Database configuration
DB_CONFIG = {
    'host': 'sql12.freemysqlhosting.net',
    'database': 'sql12740625',
    'user': 'sql12740625',
    'password': 'QGG9kdrE4g',
    'port': 3306,
    'pool_size': 5,
    'pool_reset_session': True
}

# Global variables for model and tokenizer
GLOBAL_MODEL = None
GLOBAL_TOKENIZER = None
db_connection_status = False

def initialize_model():
    """Initialize model and tokenizer globally"""
    global GLOBAL_MODEL, GLOBAL_TOKENIZER
    logging.info("Initializing model and tokenizer...")
    st.write("Initializing model and tokenizer...")
    start_time = time.time()
    
    model_name_sql = "premai-io/prem-1B-SQL"
    GLOBAL_TOKENIZER = AutoTokenizer.from_pretrained(model_name_sql)
    GLOBAL_MODEL = AutoModelForCausalLM.from_pretrained(
        model_name_sql,
        torch_dtype=torch.float32,  # Use float32 for CPU
    ).to(device)
    
    # Set model to evaluation mode
    GLOBAL_MODEL.eval()
    
    logging.info(f"Model initialization took {time.time() - start_time:.2f} seconds")

def test_db_connection():
    """Test database connection with timeout"""
    global db_connection_status
    try:
        logging.info("Testing database connection...")
        connection = mysql.connector.connect(
            **DB_CONFIG,
            connect_timeout=10
        )
        if connection.is_connected():
            db_info = connection.get_server_info()
            cursor = connection.cursor()
            cursor.execute("SELECT DATABASE();")
            db_name = cursor.fetchone()[0]
            cursor.close()
            connection.close()
            db_connection_status = True
            logging.info(f"Successfully connected to MySQL Server version {db_info} - Database: {db_name}")
            return True, f"Successfully connected to MySQL Server version {db_info}\nDatabase: {db_name}"
    except Error as e:
        db_connection_status = False
        logging.error(f"Error connecting to MySQL database: {e}")
        return False, f"Error connecting to MySQL database: {e}"
    return False, "Unable to establish database connection"

def get_db_connection():
    """Get database connection from pool"""
    logging.info("Getting database connection from pool...")
    return mysql.connector.connect(**DB_CONFIG)

def execute_query(query):
    """Execute SQL query with timeout and connection pooling"""
    logging.info(f"Executing query: {query}")
    connection = None
    try:
        connection = get_db_connection()
        cursor = connection.cursor(dictionary=True, buffered=True)
        cursor.execute(query)
        results = cursor.fetchall()
        logging.info(f"Query executed successfully, retrieved {len(results)} records.")
        return results
    except Error as e:
        logging.error(f"Error executing query: {e}")
        return f"Error executing query: {e}"
    finally:
        if connection and connection.is_connected():
            cursor.close()
            connection.close()
            logging.info("Database connection closed.")

def generate_sql(natural_language_query):
    """Generate SQL query with performance optimizations"""
    logging.info(f"Generating SQL for query: {natural_language_query}")
    try:
        start_time = time.time()
        
        schema_info = """
        CREATE TABLE sales (
          pizza_id DECIMAL(8,2) PRIMARY KEY,
          order_id DECIMAL(8,2),
          pizza_name_id VARCHAR(14),
          quantity DECIMAL(4,2),
          order_date DATE,
          order_time VARCHAR(8),
          unit_price DECIMAL(5,2),
          total_price DECIMAL(5,2),
          pizza_size VARCHAR(3),
          pizza_category VARCHAR(7),
          pizza_ingredients VARCHAR(97),
          pizza_name VARCHAR(42)
        );
        """
        
        prompt = f"""### Task: Generate a SQL query to answer the following question.
        ### Database Schema:
        {schema_info}
        ### Question: {natural_language_query}
        ### SQL Query:"""

        inputs = GLOBAL_TOKENIZER(
            prompt, 
            return_tensors="pt", 
            padding=True, 
            truncation=True, 
            max_length=512,
            return_attention_mask=True
        )
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = GLOBAL_MODEL.generate(
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                max_length=256,
                temperature=0.1,
                do_sample=True,
                top_p=0.95,
                num_return_sequences=1,
                pad_token_id=GLOBAL_TOKENIZER.eos_token_id,
            )
            
        generated_query = GLOBAL_TOKENIZER.decode(outputs[0], skip_special_tokens=True)
        sql_query = generated_query.split("### SQL Query:")[-1].strip()
        
        logging.info(f"SQL generation took {time.time() - start_time:.2f} seconds")
        return sql_query

    except Exception as e:
        logging.error(f"Error generating SQL query: {str(e)}")
        return f"Error generating SQL query: {str(e)}"

def format_result(query_result):
    """Format query results efficiently"""
    if isinstance(query_result, str) and "Error" in query_result:
        logging.warning(f"Query result contains an error: {query_result}")
        return query_result
    
    if not query_result:
        logging.info("No results found.")
        return "No results found."
    
    # Use list comprehension for better performance
    if len(query_result) == 1:
        return "\n".join(f"{k}: {v}" for k, v in query_result[0].items())
    
    results = [f"Found {len(query_result)} results:\n"]
    for i, row in enumerate(query_result[:5], 1):
        results.append(f"Result {i}:")
        results.extend(f"{k}: {v}" for k, v in row.items())
        results.append("")
    
    if len(query_result) > 5:
        results.append(f"(Showing first 5 of {len(query_result)} results)")
    
    return "\n".join(results)

def check_live_connection():
    """Check the database connection status periodically."""
    while True:
        test_db_connection()
        time.sleep(10)  # Check every 10 seconds

def main():
    """Main function with Streamlit UI components"""
    st.title("Natural Language to SQL Query")
    st.write("Ask questions about pizza sales data in plain English.")
    
    # Start the live connection check in a separate thread
    threading.Thread(target=check_live_connection, daemon=True).start()
    
    # Test and display database connection status
    if db_connection_status:
        st.success("Database connection is live.")
    else:
        st.error("Database connection is not live.")
    
    # Initialize model
    initialize_model()
    
    # Input field for natural language query
    natural_language_query = st.text_input("Enter your question", placeholder="e.g., What were the total sales for each pizza category?")
    
    if st.button("Generate and Execute Query"):
        if natural_language_query:
            # Generate SQL query
            sql_query = generate_sql(natural_language_query)
            st.write("Generated SQL Query:", sql_query)

            # Execute the generated query
            query_result = execute_query(sql_query)
            formatted_result = format_result(query_result)
            
            st.write("Query Result:")
            st.code(json.dumps(query_result, indent=2))
            
            st.write("Human-Readable Response:")
            st.text(formatted_result)
        else:
            logging.warning("User did not enter a query.")
            st.write("Please enter a query.")

if __name__ == "__main__":
    main()