Spaces:
Paused
Paused
File size: 1,759 Bytes
f1ea451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import torch.nn as nn
from networks.encoder import Encoder
from networks.styledecoder import Synthesis
# This part is modified from: https://github.com/wyhsirius/LIA
class LIA_Model(torch.nn.Module):
def __init__(self, size = 256, style_dim = 512, motion_dim = 20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1], fusion_type=''):
super().__init__()
self.enc = Encoder(size, style_dim, motion_dim, fusion_type)
self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier)
def get_start_direction_code(self, x_start, x_target, x_face, x_aug):
enc_dic = self.enc(x_start, x_target, x_face, x_aug)
wa, alpha, feats = enc_dic['h_source'], enc_dic['h_motion'], enc_dic['feats']
return wa, alpha, feats
def render(self, start, direction, feats):
return self.dec(start, direction, feats)
def load_lightning_model(self, lia_pretrained_model_path):
selfState = self.state_dict()
state = torch.load(lia_pretrained_model_path, map_location='cpu')
for name, param in state.items():
origName = name;
if name not in selfState:
name = name.replace("lia.", "")
if name not in selfState:
print("%s is not in the model."%origName)
# You can ignore those errors as some parameters are only used for training
continue
if selfState[name].size() != state[origName].size():
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origName, selfState[name].size(), state[origName].size()))
continue
selfState[name].copy_(param)
|