Spaces:
Sleeping
Sleeping
File size: 49,700 Bytes
a277bb8 362146f a277bb8 92b1ea8 a277bb8 92b1ea8 a277bb8 92b1ea8 a277bb8 ef94a96 a277bb8 a30d933 a277bb8 92b1ea8 a277bb8 362146f a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 |
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR model and criterion classes.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
import copy
from typing import List
import torchvision.transforms.functional as vis_F
from torchvision.transforms import InterpolationMode
import torch
import torch.nn.functional as F
from torch import nn
from torchvision.ops.boxes import nms
from torchvision.ops import roi_align
from transformers import (
AutoTokenizer,
BertModel,
BertTokenizer,
RobertaModel,
RobertaTokenizerFast,
)
from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.misc import (
NestedTensor,
accuracy,
get_world_size,
interpolate,
inverse_sigmoid,
is_dist_avail_and_initialized,
nested_tensor_from_tensor_list,
)
from groundingdino.util.utils import get_phrases_from_posmap
from groundingdino.util.visualizer import COCOVisualizer
from groundingdino.util.vl_utils import create_positive_map_from_span
from ..registry import MODULE_BUILD_FUNCS
from .backbone import build_backbone
from .bertwarper import (
BertModelWarper,
generate_masks_with_special_tokens,
generate_masks_with_special_tokens_and_transfer_map,
)
from .transformer import build_transformer
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss
from .matcher import build_matcher
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from groundingdino.util.visualizer import renorm
def numpy_2_cv2(np_img):
if np.min(np_img) < 0:
raise Exception("image min is less than 0. Img min: " + str(np.min(np_img)))
if np.max(np_img) > 1:
raise Exception("image max is greater than 1. Img max: " + str(np.max(np_img)))
np_img = (np_img * 255).astype(np.uint8)
# Need to somehow ensure image is in RGB format. Note this line shows up in SAM demo: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2_image = np.asarray(np_img)
return cv2_image
def vis_exemps(image, exemp, f_name):
plt.imshow(image)
plt.gca().add_patch(
Rectangle(
(exemp[0], exemp[1]),
exemp[2] - exemp[0],
exemp[3] - exemp[1],
edgecolor="red",
facecolor="none",
lw=1,
)
)
plt.savefig(f_name)
plt.close()
class GroundingDINO(nn.Module):
"""This is the Cross-Attention Detector module that performs object detection"""
def __init__(
self,
backbone,
transformer,
num_queries,
aux_loss=False,
iter_update=False,
query_dim=2,
num_feature_levels=1,
nheads=8,
# two stage
two_stage_type="no", # ['no', 'standard']
dec_pred_bbox_embed_share=True,
two_stage_class_embed_share=True,
two_stage_bbox_embed_share=True,
num_patterns=0,
dn_number=100,
dn_box_noise_scale=0.4,
dn_label_noise_ratio=0.5,
dn_labelbook_size=100,
text_encoder_type="bert-base-uncased",
sub_sentence_present=True,
max_text_len=256,
):
"""Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
self.hidden_dim = hidden_dim = transformer.d_model
self.num_feature_levels = num_feature_levels
self.nheads = nheads
self.max_text_len = max_text_len
self.sub_sentence_present = sub_sentence_present
# setting query dim
self.query_dim = query_dim
assert query_dim == 4
# visual exemplar cropping
self.feature_map_proj = nn.Conv2d((256 + 512 + 1024), hidden_dim, kernel_size=1)
# for dn training
self.num_patterns = num_patterns
self.dn_number = dn_number
self.dn_box_noise_scale = dn_box_noise_scale
self.dn_label_noise_ratio = dn_label_noise_ratio
self.dn_labelbook_size = dn_labelbook_size
# bert
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
self.bert.pooler.dense.weight.requires_grad_(False)
self.bert.pooler.dense.bias.requires_grad_(False)
self.bert = BertModelWarper(bert_model=self.bert)
self.feat_map = nn.Linear(
self.bert.config.hidden_size, self.hidden_dim, bias=True
)
nn.init.constant_(self.feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.feat_map.weight.data)
# freeze
# special tokens
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(
["[CLS]", "[SEP]", ".", "?"]
)
# prepare input projection layers
if num_feature_levels > 1:
num_backbone_outs = len(backbone.num_channels)
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = backbone.num_channels[_]
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
)
for _ in range(num_feature_levels - num_backbone_outs):
input_proj_list.append(
nn.Sequential(
nn.Conv2d(
in_channels, hidden_dim, kernel_size=3, stride=2, padding=1
),
nn.GroupNorm(32, hidden_dim),
)
)
in_channels = hidden_dim
self.input_proj = nn.ModuleList(input_proj_list)
else:
assert (
two_stage_type == "no"
), "two_stage_type should be no if num_feature_levels=1 !!!"
self.input_proj = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
]
)
self.backbone = backbone
self.aux_loss = aux_loss
self.box_pred_damping = box_pred_damping = None
self.iter_update = iter_update
assert iter_update, "Why not iter_update?"
# prepare pred layers
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
# prepare class & box embed
_class_embed = ContrastiveEmbed()
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
if dec_pred_bbox_embed_share:
box_embed_layerlist = [
_bbox_embed for i in range(transformer.num_decoder_layers)
]
else:
box_embed_layerlist = [
copy.deepcopy(_bbox_embed)
for i in range(transformer.num_decoder_layers)
]
class_embed_layerlist = [
_class_embed for i in range(transformer.num_decoder_layers)
]
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
self.class_embed = nn.ModuleList(class_embed_layerlist)
self.transformer.decoder.bbox_embed = self.bbox_embed
self.transformer.decoder.class_embed = self.class_embed
# two stage
self.two_stage_type = two_stage_type
assert two_stage_type in [
"no",
"standard",
], "unknown param {} of two_stage_type".format(two_stage_type)
if two_stage_type != "no":
if two_stage_bbox_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_bbox_embed = _bbox_embed
else:
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
if two_stage_class_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_class_embed = _class_embed
else:
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
self.refpoint_embed = None
self._reset_parameters()
def _reset_parameters(self):
# init input_proj
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
def init_ref_points(self, use_num_queries):
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
def add_exemplar_tokens(self, tokenized, text_dict, exemplar_tokens, labels):
input_ids = tokenized["input_ids"]
device = input_ids.device
new_input_ids = []
encoded_text = text_dict["encoded_text"]
new_encoded_text = []
text_token_mask = text_dict["text_token_mask"]
new_text_token_mask = []
position_ids = text_dict["position_ids"]
text_self_attention_masks = text_dict["text_self_attention_masks"]
for sample_ind in range(len(labels)):
label = labels[sample_ind][0]
exemplars = exemplar_tokens[sample_ind]
label_count = -1
assert len(input_ids[sample_ind]) == len(position_ids[sample_ind])
for token_ind in range(len(input_ids[sample_ind])):
input_id = input_ids[sample_ind][token_ind]
if (input_id not in self.specical_tokens) and (
token_ind == 0
or (input_ids[sample_ind][token_ind - 1] in self.specical_tokens)
):
label_count += 1
if label_count == label:
# Get the index where to insert the exemplar tokens.
ind_to_insert_exemplar = token_ind
while (
input_ids[sample_ind][ind_to_insert_exemplar]
not in self.specical_tokens
):
ind_to_insert_exemplar += 1
break
# Handle no text case.
if label_count == -1:
ind_to_insert_exemplar = 1
# * token indicates exemplar.
new_input_ids.append(
torch.cat(
[
input_ids[sample_ind][:ind_to_insert_exemplar],
torch.tensor([1008] * exemplars.shape[0]).to(device),
input_ids[sample_ind][ind_to_insert_exemplar:],
]
)
)
new_encoded_text.append(
torch.cat(
[
encoded_text[sample_ind][:ind_to_insert_exemplar, :],
exemplars,
encoded_text[sample_ind][ind_to_insert_exemplar:, :],
]
)
)
new_text_token_mask.append(
torch.full((len(new_input_ids[sample_ind]),), True).to(device)
)
tokenized["input_ids"] = torch.stack(new_input_ids)
(
text_self_attention_masks,
position_ids,
_,
) = generate_masks_with_special_tokens_and_transfer_map(
tokenized, self.specical_tokens, None
)
return {
"encoded_text": torch.stack(new_encoded_text),
"text_token_mask": torch.stack(new_text_token_mask),
"position_ids": position_ids,
"text_self_attention_masks": text_self_attention_masks,
}
def combine_features(self, features):
(bs, c, h, w) = (
features[0].decompose()[0].shape[-4],
features[0].decompose()[0].shape[-3],
features[0].decompose()[0].shape[-2],
features[0].decompose()[0].shape[-1],
)
x = torch.cat(
[
F.interpolate(
feat.decompose()[0],
size=(h, w),
mode="bilinear",
align_corners=True,
)
for feat in features
],
dim=1,
)
x = self.feature_map_proj(x)
return x
def forward(
self,
samples: NestedTensor,
exemplar_images: NestedTensor,
exemplars: List,
labels,
targets: List = None,
cropped=False,
orig_img=None,
crop_width=0,
crop_height=0,
**kw,
):
"""The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x num_classes]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, width, height). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
print("inside forward")
if targets is None:
captions = kw["captions"]
else:
captions = [t["caption"] for t in targets]
# encoder texts
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
samples.device
)
print("tokenized text")
one_hot_token = tokenized
(
text_self_attention_masks,
position_ids,
cate_to_token_mask_list,
) = generate_masks_with_special_tokens_and_transfer_map(
tokenized, self.specical_tokens, self.tokenizer
)
if text_self_attention_masks.shape[1] > self.max_text_len:
text_self_attention_masks = text_self_attention_masks[
:, : self.max_text_len, : self.max_text_len
]
position_ids = position_ids[:, : self.max_text_len]
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
tokenized["attention_mask"] = tokenized["attention_mask"][
:, : self.max_text_len
]
tokenized["token_type_ids"] = tokenized["token_type_ids"][
:, : self.max_text_len
]
# extract text embeddings
if self.sub_sentence_present:
tokenized_for_encoder = {
k: v for k, v in tokenized.items() if k != "attention_mask"
}
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
tokenized_for_encoder["position_ids"] = position_ids
else:
tokenized_for_encoder = tokenized
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
print("got bert output")
encoded_text = self.feat_map(
bert_output["last_hidden_state"]
) # bs, 195, d_model
text_token_mask = tokenized.attention_mask.bool() # bs, 195
# text_token_mask: True for nomask, False for mask
# text_self_attention_masks: True for nomask, False for mask
if encoded_text.shape[1] > self.max_text_len:
encoded_text = encoded_text[:, : self.max_text_len, :]
text_token_mask = text_token_mask[:, : self.max_text_len]
position_ids = position_ids[:, : self.max_text_len]
text_self_attention_masks = text_self_attention_masks[
:, : self.max_text_len, : self.max_text_len
]
text_dict = {
"encoded_text": encoded_text, # bs, 195, d_model
"text_token_mask": text_token_mask, # bs, 195
"position_ids": position_ids, # bs, 195
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
}
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
if not cropped:
features, poss = self.backbone(samples)
features_exemp, _ = self.backbone(exemplar_images)
combined_features = self.combine_features(features_exemp)
# Get visual exemplar tokens.
bs = len(exemplars)
num_exemplars = exemplars[0].shape[0]
if num_exemplars > 0:
exemplar_tokens = (
roi_align(
combined_features,
boxes=exemplars,
output_size=(1, 1),
spatial_scale=(1 / 8),
aligned=True,
)
.squeeze(-1)
.squeeze(-1)
.reshape(bs, num_exemplars, -1)
)
else:
exemplar_tokens = None
print("got visual exemplar tokens")
else:
features, poss = self.backbone(samples)
(h, w) = (
samples.decompose()[0][0].shape[1],
samples.decompose()[0][0].shape[2],
)
(orig_img_h, orig_img_w) = orig_img.shape[1], orig_img.shape[2]
bs = len(samples.decompose()[0])
exemp_imgs = []
new_exemplars = []
ind = 0
for exemp in exemplars[0]:
center_x = (exemp[0] + exemp[2]) / 2
center_y = (exemp[1] + exemp[3]) / 2
start_x = max(int(center_x - crop_width / 2), 0)
end_x = min(int(center_x + crop_width / 2), orig_img_w)
start_y = max(int(center_y - crop_height / 2), 0)
end_y = min(int(center_y + crop_height / 2), orig_img_h)
scale_x = w / (end_x - start_x)
scale_y = h / (end_y - start_y)
exemp_imgs.append(
vis_F.resize(
orig_img[:, start_y:end_y, start_x:end_x],
(h, w),
interpolation=InterpolationMode.BICUBIC,
)
)
new_exemplars.append(
[
(exemp[0] - start_x) * scale_x,
(exemp[1] - start_y) * scale_y,
(exemp[2] - start_x) * scale_x,
(exemp[3] - start_y) * scale_y,
]
)
vis_exemps(
renorm(exemp_imgs[-1].cpu()).permute(1, 2, 0).numpy(),
[coord.item() for coord in new_exemplars[-1]],
str(ind) + ".jpg",
)
vis_exemps(
renorm(orig_img.cpu()).permute(1, 2, 0).numpy(),
[coord.item() for coord in exemplars[0][ind]],
"orig-" + str(ind) + ".jpg",
)
ind += 1
exemp_imgs = nested_tensor_from_tensor_list(exemp_imgs)
features_exemp, _ = self.backbone(exemp_imgs)
combined_features = self.combine_features(features_exemp)
new_exemplars = [
torch.tensor(exemp).unsqueeze(0).to(samples.device) for exemp in new_exemplars
]
# Get visual exemplar tokens.
exemplar_tokens = (
roi_align(
combined_features,
boxes=new_exemplars,
output_size=(1, 1),
spatial_scale=(1 / 8),
aligned=True,
)
.squeeze(-1)
.squeeze(-1)
.reshape(3, 256)
)
exemplar_tokens = torch.stack([exemplar_tokens] * bs)
if exemplar_tokens is not None:
text_dict = self.add_exemplar_tokens(
tokenized, text_dict, exemplar_tokens, labels
)
srcs = []
masks = []
for l, feat in enumerate(features):
print("l: " + str(l))
src, mask = feat.decompose()
srcs.append(self.input_proj[l](src))
masks.append(mask)
assert mask is not None
if self.num_feature_levels > len(srcs):
_len_srcs = len(srcs)
for l in range(_len_srcs, self.num_feature_levels):
if l == _len_srcs:
src = self.input_proj[l](features[-1].tensors)
else:
src = self.input_proj[l](srcs[-1])
m = samples.mask
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(
torch.bool
)[0]
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
srcs.append(src)
masks.append(mask)
poss.append(pos_l)
input_query_bbox = input_query_label = attn_mask = dn_meta = None
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
)
print("passed info through transformer")
# deformable-detr-like anchor update
outputs_coord_list = []
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
zip(reference[:-1], self.bbox_embed, hs)
):
layer_delta_unsig = layer_bbox_embed(layer_hs)
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
outputs_coord_list.append(layer_outputs_unsig)
outputs_coord_list = torch.stack(outputs_coord_list)
outputs_class = torch.stack(
[
layer_cls_embed(layer_hs, text_dict)
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
]
)
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
# Used to calculate losses
bs, len_td = text_dict["text_token_mask"].shape
out["text_mask"] = torch.zeros(bs, self.max_text_len, dtype=torch.bool).to(
samples.device
)
for b in range(bs):
for j in range(len_td):
if text_dict["text_token_mask"][b][j] == True:
out["text_mask"][b][j] = True
# for intermediate outputs
if self.aux_loss:
out["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord_list)
out["token"] = one_hot_token
# # for encoder output
if hs_enc is not None:
# prepare intermediate outputs
interm_coord = ref_enc[-1]
interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
out["interm_outputs"] = {
"pred_logits": interm_class,
"pred_boxes": interm_coord,
}
out["interm_outputs_for_matching_pre"] = {
"pred_logits": interm_class,
"pred_boxes": init_box_proposal,
}
# outputs['pred_logits'].shape
# torch.Size([4, 900, 256])
# outputs['pred_boxes'].shape
# torch.Size([4, 900, 4])
# outputs['text_mask'].shape
# torch.Size([256])
# outputs['text_mask']
# outputs['aux_outputs'][0].keys()
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])
# outputs['aux_outputs'][img_idx]
# outputs['token']
# <class 'transformers.tokenization_utils_base.BatchEncoding'>
# outputs['interm_outputs'].keys()
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])
# outputs['interm_outputs_for_matching_pre'].keys()
# dict_keys(['pred_logits', 'pred_boxes'])
# outputs['one_hot'].shape
# torch.Size([4, 900, 256])
print("returning out")
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [
{"pred_logits": a, "pred_boxes": b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
class SetCriterion(nn.Module):
def __init__(self, matcher, weight_dict, focal_alpha, focal_gamma, losses):
"""Create the criterion.
Parameters:
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
losses: list of all the losses to be applied. See get_loss for list of available losses.
focal_alpha: alpha in Focal Loss
"""
super().__init__()
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.focal_alpha = focal_alpha
self.focal_gamma = focal_gamma
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
"""
pred_logits = outputs["pred_logits"]
device = pred_logits.device
tgt_lengths = torch.as_tensor(
[len(v["labels"]) for v in targets], device=device
)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert "pred_boxes" in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat(
[t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0
)
loss_bbox = F.l1_loss(src_boxes[:, :2], target_boxes[:, :2], reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
box_ops.generalized_box_iou(
box_ops.box_cxcywh_to_xyxy(src_boxes),
box_ops.box_cxcywh_to_xyxy(target_boxes),
)
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
# calculate the x,y and h,w loss
with torch.no_grad():
losses["loss_xy"] = loss_bbox[..., :2].sum() / num_boxes
losses["loss_hw"] = loss_bbox[..., 2:].sum() / num_boxes
return losses
def token_sigmoid_binary_focal_loss(self, outputs, targets, indices, num_boxes):
pred_logits = outputs["pred_logits"]
new_targets = outputs["one_hot"].to(pred_logits.device)
text_mask = outputs["text_mask"]
assert new_targets.dim() == 3
assert pred_logits.dim() == 3 # batch x from x to
bs, n, _ = pred_logits.shape
alpha = self.focal_alpha
gamma = self.focal_gamma
if text_mask is not None:
# ODVG: each sample has different mask
text_mask = text_mask.repeat(1, pred_logits.size(1)).view(
outputs["text_mask"].shape[0], -1, outputs["text_mask"].shape[1]
)
pred_logits = torch.masked_select(pred_logits, text_mask)
new_targets = torch.masked_select(new_targets, text_mask)
new_targets = new_targets.float()
p = torch.sigmoid(pred_logits)
ce_loss = F.binary_cross_entropy_with_logits(
pred_logits, new_targets, reduction="none"
)
p_t = p * new_targets + (1 - p) * (1 - new_targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * new_targets + (1 - alpha) * (1 - new_targets)
loss = alpha_t * loss
total_num_pos = 0
for batch_indices in indices:
total_num_pos += len(batch_indices[0])
num_pos_avg_per_gpu = max(total_num_pos, 1.0)
loss = loss.sum() / num_pos_avg_per_gpu
losses = {"loss_ce": loss}
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat(
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)]
)
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat(
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]
)
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
"labels": self.token_sigmoid_binary_focal_loss,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
def forward(self, outputs, targets, cat_list, caption, return_indices=False):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
return_indices: used for vis. if True, the layer0-5 indices will be returned as well.
"""
device = next(iter(outputs.values())).device
one_hot = torch.zeros(
outputs["pred_logits"].size(), dtype=torch.int64
) # torch.Size([bs, 900, 256])
token = outputs["token"]
label_map_list = []
indices = []
for j in range(len(cat_list)): # bs
label_map = []
for i in range(len(cat_list[j])):
label_id = torch.tensor([i])
per_label = create_positive_map_exemplar(
token["input_ids"][j], label_id, [101, 102, 1012, 1029]
)
label_map.append(per_label)
label_map = torch.stack(label_map, dim=0).squeeze(1)
label_map_list.append(label_map)
for j in range(len(cat_list)): # bs
for_match = {
"pred_logits": outputs["pred_logits"][j].unsqueeze(0),
"pred_boxes": outputs["pred_boxes"][j].unsqueeze(0),
}
inds = self.matcher(for_match, [targets[j]], label_map_list[j])
indices.extend(inds)
# indices : A list of size batch_size, containing tuples of (index_i, index_j) where:
# - index_i is the indices of the selected predictions (in order)
# - index_j is the indices of the corresponding selected targets (in order)
# import pdb; pdb.set_trace()
tgt_ids = [v["labels"].cpu() for v in targets]
# len(tgt_ids) == bs
for i in range(len(indices)):
tgt_ids[i] = tgt_ids[i][indices[i][1]]
one_hot[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long)
outputs["one_hot"] = one_hot
if return_indices:
indices0_copy = indices
indices_list = []
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes_list = [len(t["labels"]) for t in targets]
num_boxes = sum(num_boxes_list)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_boxes)
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for idx, aux_outputs in enumerate(outputs["aux_outputs"]):
indices = []
for j in range(len(cat_list)): # bs
aux_output_single = {
"pred_logits": aux_outputs["pred_logits"][j].unsqueeze(0),
"pred_boxes": aux_outputs["pred_boxes"][j].unsqueeze(0),
}
inds = self.matcher(
aux_output_single, [targets[j]], label_map_list[j]
)
indices.extend(inds)
one_hot_aux = torch.zeros(
outputs["pred_logits"].size(), dtype=torch.int64
)
tgt_ids = [v["labels"].cpu() for v in targets]
for i in range(len(indices)):
tgt_ids[i] = tgt_ids[i][indices[i][1]]
one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(
torch.long
)
aux_outputs["one_hot"] = one_hot_aux
aux_outputs["text_mask"] = outputs["text_mask"]
if return_indices:
indices_list.append(indices)
for loss in self.losses:
kwargs = {}
l_dict = self.get_loss(
loss, aux_outputs, targets, indices, num_boxes, **kwargs
)
l_dict = {k + f"_{idx}": v for k, v in l_dict.items()}
losses.update(l_dict)
# interm_outputs loss
if "interm_outputs" in outputs:
interm_outputs = outputs["interm_outputs"]
indices = []
for j in range(len(cat_list)): # bs
interm_output_single = {
"pred_logits": interm_outputs["pred_logits"][j].unsqueeze(0),
"pred_boxes": interm_outputs["pred_boxes"][j].unsqueeze(0),
}
inds = self.matcher(
interm_output_single, [targets[j]], label_map_list[j]
)
indices.extend(inds)
one_hot_aux = torch.zeros(outputs["pred_logits"].size(), dtype=torch.int64)
tgt_ids = [v["labels"].cpu() for v in targets]
for i in range(len(indices)):
tgt_ids[i] = tgt_ids[i][indices[i][1]]
one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(
torch.long
)
interm_outputs["one_hot"] = one_hot_aux
interm_outputs["text_mask"] = outputs["text_mask"]
if return_indices:
indices_list.append(indices)
for loss in self.losses:
kwargs = {}
l_dict = self.get_loss(
loss, interm_outputs, targets, indices, num_boxes, **kwargs
)
l_dict = {k + f"_interm": v for k, v in l_dict.items()}
losses.update(l_dict)
if return_indices:
indices_list.append(indices0_copy)
return losses, indices_list
return losses
class PostProcess(nn.Module):
"""This module converts the model's output into the format expected by the coco api"""
def __init__(
self,
num_select=100,
text_encoder_type="text_encoder_type",
nms_iou_threshold=-1,
use_coco_eval=False,
args=None,
) -> None:
super().__init__()
self.num_select = num_select
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
if args.use_coco_eval:
from pycocotools.coco import COCO
coco = COCO(args.coco_val_path)
category_dict = coco.loadCats(coco.getCatIds())
cat_list = [item["name"] for item in category_dict]
else:
cat_list = args.label_list
caption = " . ".join(cat_list) + " ."
tokenized = self.tokenizer(caption, padding="longest", return_tensors="pt")
label_list = torch.arange(len(cat_list))
pos_map = create_positive_map(tokenized, label_list, cat_list, caption)
# build a mapping from label_id to pos_map
if args.use_coco_eval:
id_map = {
0: 1,
1: 2,
2: 3,
3: 4,
4: 5,
5: 6,
6: 7,
7: 8,
8: 9,
9: 10,
10: 11,
11: 13,
12: 14,
13: 15,
14: 16,
15: 17,
16: 18,
17: 19,
18: 20,
19: 21,
20: 22,
21: 23,
22: 24,
23: 25,
24: 27,
25: 28,
26: 31,
27: 32,
28: 33,
29: 34,
30: 35,
31: 36,
32: 37,
33: 38,
34: 39,
35: 40,
36: 41,
37: 42,
38: 43,
39: 44,
40: 46,
41: 47,
42: 48,
43: 49,
44: 50,
45: 51,
46: 52,
47: 53,
48: 54,
49: 55,
50: 56,
51: 57,
52: 58,
53: 59,
54: 60,
55: 61,
56: 62,
57: 63,
58: 64,
59: 65,
60: 67,
61: 70,
62: 72,
63: 73,
64: 74,
65: 75,
66: 76,
67: 77,
68: 78,
69: 79,
70: 80,
71: 81,
72: 82,
73: 84,
74: 85,
75: 86,
76: 87,
77: 88,
78: 89,
79: 90,
}
new_pos_map = torch.zeros((91, 256))
for k, v in id_map.items():
new_pos_map[v] = pos_map[k]
pos_map = new_pos_map
self.nms_iou_threshold = nms_iou_threshold
self.positive_map = pos_map
@torch.no_grad()
def forward(self, outputs, target_sizes, not_to_xyxy=False, test=False):
"""Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
num_select = self.num_select
out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"]
prob_to_token = out_logits.sigmoid()
pos_maps = self.positive_map.to(prob_to_token.device)
for label_ind in range(len(pos_maps)):
if pos_maps[label_ind].sum() != 0:
pos_maps[label_ind] = pos_maps[label_ind] / pos_maps[label_ind].sum()
prob_to_label = prob_to_token @ pos_maps.T
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = prob_to_label
topk_values, topk_indexes = torch.topk(
prob.view(prob.shape[0], -1), num_select, dim=1
)
scores = topk_values
topk_boxes = torch.div(topk_indexes, prob.shape[2], rounding_mode="trunc")
labels = topk_indexes % prob.shape[2]
if not_to_xyxy:
boxes = out_bbox
else:
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
# if test:
# assert not not_to_xyxy
# boxes[:,:,2:] = boxes[:,:,2:] - boxes[:,:,:2]
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
if self.nms_iou_threshold > 0:
item_indices = [
nms(b, s, iou_threshold=self.nms_iou_threshold)
for b, s in zip(boxes, scores)
]
results = [
{"scores": s[i], "labels": l[i], "boxes": b[i]}
for s, l, b, i in zip(scores, labels, boxes, item_indices)
]
else:
results = [
{"scores": s, "labels": l, "boxes": b}
for s, l, b in zip(scores, labels, boxes)
]
results = [
{"scores": s, "labels": l, "boxes": b}
for s, l, b in zip(scores, labels, boxes)
]
return results
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
def build_groundingdino(args):
device = torch.device(args.device)
backbone = build_backbone(args)
transformer = build_transformer(args)
dn_labelbook_size = args.dn_labelbook_size
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
sub_sentence_present = args.sub_sentence_present
model = GroundingDINO(
backbone,
transformer,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
iter_update=True,
query_dim=4,
num_feature_levels=args.num_feature_levels,
nheads=args.nheads,
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
two_stage_type=args.two_stage_type,
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
two_stage_class_embed_share=args.two_stage_class_embed_share,
num_patterns=args.num_patterns,
dn_number=0,
dn_box_noise_scale=args.dn_box_noise_scale,
dn_label_noise_ratio=args.dn_label_noise_ratio,
dn_labelbook_size=dn_labelbook_size,
text_encoder_type=args.text_encoder_type,
sub_sentence_present=sub_sentence_present,
max_text_len=args.max_text_len,
)
matcher = build_matcher(args)
# prepare weight dict
weight_dict = {"loss_ce": args.cls_loss_coef, "loss_bbox": args.bbox_loss_coef}
weight_dict["loss_giou"] = args.giou_loss_coef
clean_weight_dict_wo_dn = copy.deepcopy(weight_dict)
clean_weight_dict = copy.deepcopy(weight_dict)
# TODO this is a hack
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update(
{k + f"_{i}": v for k, v in clean_weight_dict.items()}
)
weight_dict.update(aux_weight_dict)
if args.two_stage_type != "no":
interm_weight_dict = {}
try:
no_interm_box_loss = args.no_interm_box_loss
except:
no_interm_box_loss = False
_coeff_weight_dict = {
"loss_ce": 1.0,
"loss_bbox": 1.0 if not no_interm_box_loss else 0.0,
"loss_giou": 1.0 if not no_interm_box_loss else 0.0,
}
try:
interm_loss_coef = args.interm_loss_coef
except:
interm_loss_coef = 1.0
interm_weight_dict.update(
{
k + f"_interm": v * interm_loss_coef * _coeff_weight_dict[k]
for k, v in clean_weight_dict_wo_dn.items()
}
)
weight_dict.update(interm_weight_dict)
# losses = ['labels', 'boxes', 'cardinality']
losses = ["labels", "boxes"]
criterion = SetCriterion(
matcher=matcher,
weight_dict=weight_dict,
focal_alpha=args.focal_alpha,
focal_gamma=args.focal_gamma,
losses=losses,
)
criterion.to(device)
postprocessors = {
"bbox": PostProcess(
num_select=args.num_select,
text_encoder_type=args.text_encoder_type,
nms_iou_threshold=args.nms_iou_threshold,
args=args,
)
}
return model, criterion, postprocessors
def create_positive_map(tokenized, tokens_positive, cat_list, caption):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, label in enumerate(tokens_positive):
start_ind = caption.find(cat_list[label])
end_ind = start_ind + len(cat_list[label]) - 1
beg_pos = tokenized.char_to_token(start_ind)
try:
end_pos = tokenized.char_to_token(end_ind)
except:
end_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end_ind - 1)
if end_pos is None:
end_pos = tokenized.char_to_token(end_ind - 2)
except:
end_pos = None
# except Exception as e:
# print("beg:", beg, "end:", end)
# print("token_positive:", tokens_positive)
# # print("beg_pos:", beg_pos, "end_pos:", end_pos)
# raise e
# if beg_pos is None:
# try:
# beg_pos = tokenized.char_to_token(beg + 1)
# if beg_pos is None:
# beg_pos = tokenized.char_to_token(beg + 2)
# except:
# beg_pos = None
# if end_pos is None:
# try:
# end_pos = tokenized.char_to_token(end - 2)
# if end_pos is None:
# end_pos = tokenized.char_to_token(end - 3)
# except:
# end_pos = None
if beg_pos is None or end_pos is None:
continue
if beg_pos < 0 or end_pos < 0:
continue
if beg_pos > end_pos:
continue
# assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos : end_pos + 1].fill_(1)
return positive_map
def create_positive_map_exemplar(input_ids, label, special_tokens):
tokens_positive = torch.zeros(256, dtype=torch.float)
count = -1
for token_ind in range(len(input_ids)):
input_id = input_ids[token_ind]
if (input_id not in special_tokens) and (
token_ind == 0 or (input_ids[token_ind - 1] in special_tokens)
):
count += 1
if count == label:
ind_to_insert_ones = token_ind
while input_ids[ind_to_insert_ones] not in special_tokens:
tokens_positive[ind_to_insert_ones] = 1
ind_to_insert_ones += 1
break
return tokens_positive
|