Spaces:
Sleeping
Sleeping
File size: 1,677 Bytes
5a9e3df 42b3bbc 5a9e3df 42b3bbc 5a9e3df 42b3bbc b14b05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import whisper
import gradio as gr
from transformers import pipeline
model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
def process_audio_file(file):
with open(file, "rb") as f:
inputs = f.read()
audio = ffmpeg_read(inputs, sampling_rate)
return audio
def transcribe(Microphone, File_Upload):
warn_output = ""
if (Microphone is not None) and (File_Upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
file = Microphone
elif (Microphone is None) and (File_Upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif Microphone is not None:
file = Microphone
else:
file = File_Upload
result = model.transcribe(file, task="translate")
return sentiment_analysis(result['text'])
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type='filepath', optional=True),
gr.inputs.Audio(source="upload", type='filepath', optional=True),
],
outputs=[
gr.outputs.Textbox(label="Language"),
gr.Number(label="Probability"),
],
layout="horizontal",
theme="huggingface",
title="Whisper Language Identification",
description="Demo for Language Identification using OpenAI's [Whisper Large V2](https://huggingface.co/openai/whisper-large-v2).",
allow_flagging='never',
)
iface.launch(enable_queue=True) |