File size: 4,268 Bytes
9c078e7
4a8131a
56f924f
9c078e7
56f924f
 
 
0e24f0d
a345dc2
b1a9b5c
9c078e7
aecc737
0e24f0d
aecc737
 
 
9c078e7
99d2247
 
 
7c5f508
56f924f
 
 
 
 
 
 
 
4d92f8a
56f924f
4d92f8a
56f924f
4d92f8a
 
 
 
 
 
 
 
 
e1ae004
4d92f8a
e1ae004
a345dc2
0e24f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d2247
 
0e24f0d
c35893e
d6c9c32
c35893e
3e5dccf
73c0033
3e5dccf
73c0033
3e5dccf
73c0033
c35893e
3e5dccf
44cf124
c35893e
 
73c0033
 
 
a345dc2
 
73c0033
a345dc2
 
73c0033
 
 
 
 
c35893e
44cf124
0e24f0d
 
 
73c0033
a345dc2
 
 
 
 
 
 
 
d6c9c32
a345dc2
 
d6c9c32
0e24f0d
 
aecc737
 
 
 
 
 
 
 
 
9c078e7
c35893e
a345dc2
73c0033
9c078e7
 
 
 
0e24f0d
73c0033
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("BatsResearch/bonito-v1")
tokenizer = AutoTokenizer.from_pretrained("BatsResearch/bonito-v1")
model.to("cuda")


@spaces.GPU
def respond(
    message,
    task_type,
    max_tokens,
    temperature,
    top_p,
):
    task_type = task_type.lower()
    input_text = "<|tasktype|>\n" + task_type.strip()
    input_text += "\n<|context|>\n" + message.strip() + "\n<|task|>\n"

    input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
    output = model.generate(
        input_ids,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
    )
    pred_start = int(input_ids.shape[-1])

    response = tokenizer.decode(output[0][pred_start:], skip_special_tokens=True)

    # check if <|pipe|> is in the response
    if "<|pipe|>" in response:
        pair = response.split("<|pipe|>")
        instruction = pair[0].strip().replace("{{context}}", message)
        response = pair[1].strip()
    else:
        # fallback
        instruction = pair[0].strip().replace("{{context}}", message)
        response = "Unable to generate response. Please regenerate."

    return instruction, response


task_types = [
    "extractive question answering",
    "multiple-choice question answering",
    "question generation",
    "question answering without choices",
    "yes-no question answering",
    "coreference resolution",
    "paraphrase generation",
    "paraphrase identification",
    "sentence completion",
    "sentiment",
    "summarization",
    "text generation",
    "topic classification",
    "word sense disambiguation",
    "textual entailment",
    "natural language inference",
]
# capitalize for better readability
task_types = [task_type.capitalize() for task_type in task_types]

description = """
This is a demo for Bonito, an open-source model for conditional task generation: the task of converting unannotated text into task-specific synthetic instruction tuning data.

### More details on Bonito
- Model: https://huggingface.co/BatsResearch/bonito-v1

- Paper: https://arxiv.org/abs/2402.18334

- GitHub: https://github.com/BatsResearch/bonito

### Instructions
Try out the model by entering a context and selecting a task type from the dropdown. The model will generate a task instruction based on the context and task type you provide.
"""

examples = [(
        """Providence was one of the first cities in the country to industrialize and became noted for its textile manufacturing and subsequent machine tool, jewelry, and silverware industries. Today, the city of Providence is home to eight hospitals and eight institutions of higher learning which have shifted the city's economy into service industries, though it still retains some manufacturing activity.""",
        "Natural language inference",
    ),
    (
        """John Wick (Keanu Reeves) uncovers a path to defeating The High Table. But before he can earn his freedom, Wick must face off against a new enemy with powerful alliances across the globe and forces that turn old friends into foes.""",
        "Yes-no question answering",
    ),
]

examples_with_additional = [
    (x[0], x[1], 512, 0.7, 0.95) for x in examples
]


demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(label="Context", lines=5, placeholder="Enter context here.."),
        gr.Dropdown(
            task_types,
            value="Natural language inference",
            label="Task type",
        ),
    ],
    outputs=[
        gr.Textbox(
            label="Instruction",
            lines=5,
        ),
        gr.Textbox(label="Response"),
    ],
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    title="Bonito",
    description=description,
    examples=examples_with_additional,
)


if __name__ == "__main__":
    demo.launch()