Spaces:
Runtime error
Runtime error
File size: 2,211 Bytes
60fb2ee 6e860fb ef440de 6e860fb ef440de 6e860fb ef440de 6e860fb ef440de 6e860fb ef440de 6e860fb ef440de 6e860fb 7acc0ed 6e860fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# GAN-image-detection
This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones.
The detector is based on an ensemble of CNNs.
The backbone of each CNN is the EfficientNet-B4.
Each model of the ensemble has been trained in a different way following the suggestions presented in [this paper](https://ieeexplore.ieee.org/abstract/document/9360903) in order to increase the detector robustness to compression and resizing.
## Run the detector
### Prerequisites
1. Create and activate the conda environment
```bash
conda env create -f environment.yml
conda activate gan-image-detection
```
2. Download the model's weights from [this link](https://www.dropbox.com/s/g1z2u8wl6srjh6v/weigths.zip) and unzip the file under the main folder
```bash
wget https://www.dropbox.com/s/g1z2u8wl6srjh6v/weigths.zip
unzip weigths.zip
```
### Test the detector on a single image
We provide a simple script to obtain the model score for a single image.
```bash
python gan_vs_real_detector.py --img_path $PATH_TO_TEST_IMAGE
```
## Performance
We provide a [notebook](https://github.com/polimi-ispl/GAN-image-detection/blob/main/roc_curves.ipynb) with the script for computing the ROC curve for each dataset.
## How to cite
Training procedures have been carried out following the suggestions presented in the following paper.
Plaintext:
```
S. Mandelli, N. Bonettini, P. Bestagini, S. Tubaro, "Training CNNs in Presence of JPEG Compression: Multimedia Forensics vs Computer Vision", IEEE International Workshop on Information Forensics and Security (WIFS), 2020, doi: 10.1109/WIFS49906.2020.9360903.
```
Bibtex:
```bibtex
@INPROCEEDINGS{mandelli2020training,
author={Mandelli, Sara and Bonettini, Nicolò and Bestagini, Paolo and Tubaro, Stefano},
booktitle={IEEE International Workshop on Information Forensics and Security (WIFS)},
title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
year={2020},
doi={10.1109/WIFS49906.2020.9360903}}
```
## Credits
[Image and Sound Processing Lab - Politecnico di Milano](http://ispl.deib.polimi.it/)
- Sara Mandelli
- Nicolò Bonettini
- Paolo Bestagini
- Stefano Tubaro
|